What is the center of the circle for this equation: (x – 6)² + (y + 9)² = 25

Question

What is the center of the circle for this equation:
(x – 6)² + (y + 9)² = 25

in progress 0
Thiên Thanh 3 years 2021-08-21T20:00:30+00:00 1 Answers 4 views 0

Answers ( )

    0
    2021-08-21T20:01:56+00:00

    Answer:

    Step-by-step explanation:

    Knowing this information, we can deduce that the center of the circle is at

    (

    6

    ,

    2

    )

    , and the radius measures 3 units.

    x

    =

    9

    is a vertical line, while the circle will extend equal length in all direction, in function of it’s radius. Looking at the centre and adding 3 to the x value, we get the point

    (

    9

    ,

    2

    )

    . This point doesn’t only lie on the circle; it also lies on the line

    x

    =

    9

    . Furthermore, this is the furthest possible distance from the center, so the line will only pass through this one point. Therefore, we can state that the line x = 9 is tangent to

    (

    x

    6

    )

    2

    +

    (

    y

    +

    2

    )

    2

    =

    9

    If you graph the circle and the line you will get the same answer.

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )