What force is required so that a particle of mass m has the position function r(t) = t3 i + 7t2 j + t3 k?

Question

What force is required so that a particle of mass m has the position function r(t) = t3 i + 7t2 j + t3 k?

in progress 0
Gia Bảo 3 years 2021-08-17T06:50:00+00:00 1 Answers 230 views 0

Answers ( )

    0
    2021-08-17T06:51:12+00:00

    Answer:

    F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k\\F(t)=\,(6\,m\,t,14\,m,6\,m\,t)

    Explanation:

    Recall that force is defined as mass times acceleration, and acceleration is the second derivative with respect to time of the position. Since the position comes in terms of time, and with separate functions for each component in the three dimensional space, we first calculate the velocity (with the first derivative, and then the acceleration as the second derivative:

    r(t)=t^3\,\hat i+7\,t^2\,\hat j+t^3\,\hat k\\v(t)=3\,t^2\,\hat i+14\,t\,\hat j+3\,t^2\,\hat k\\a(t)=6\,t\,\hat i+14\,\hat j+6\,t\,\hat k

    Therefore, the force will be given by the product of this acceleration times the mass “m”:

    F(t)=m\,\,a(t)=6\,m\,t\,\hat i+14\,m\,\hat j+6\,m\,t\,\hat k

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )