Tìm n để bpt (n-3)x^2-(n-2)x+n+3<=0 vô nghiệm Question Tìm n để bpt (n-3)x^2-(n-2)x+n+3<=0 vô nghiệm in progress 0 Môn Toán Cherry 4 years 2021-05-20T17:05:11+00:00 2021-05-20T17:05:11+00:00 2 Answers 12 views 0
Answers ( )
Đáp án:
$n\in \left(\dfrac{-2+2\sqrt{31}}{3};+\infty\right)$
Giải thích các bước giải:
$\quad (n-3)x^2 – (n-2)x + n + 3 \leqslant 0$ vô nghiệm
$\Leftrightarrow (n-3)x^2 – (n-2)x + n + 3>0\quad \forall x\qquad (*)$
$+)\quad n = 3$
$(*)\Leftrightarrow – x + 6 > 0\quad \forall x$ (loại)
$+)\quad n\ne 3$
$(*)\Leftrightarrow \begin{cases}n-3>0\\\Delta_{(*)}<0\end{cases}$
$\Leftrightarrow \begin{cases}n>3\\(n-2)^2 – 4(n-3)(n+3)<0\end{cases}$
$\Leftrightarrow \begin{cases}n>3\\3n^2 + 4n – 40>0\end{cases}$
$\Leftrightarrow \begin{cases}n>3\\\left[\begin{array}{l}n <\dfrac{-2-2\sqrt{31}}{3}\\ n>\dfrac{-2+2\sqrt{31}}{3}\end{array}\right.\end{cases}$
$\Leftrightarrow n > \dfrac{-2+2\sqrt{31}}{3}$
Vậy $n\in \left(\dfrac{-2+2\sqrt{31}}{3};+\infty\right)$
$(n-3)x^2-(n-2)x+n+3$
Để BPT $(n-3)x^2-(n-2)x+n+3 \le 0$ vô nghiệm thì
$(n-3)x^2-(n-2)x+n+3>0 \forall \, x(*)$
$\circledast n=3 (*)\Leftrightarrow -x+n+3>0 \forall \, x(L)\\ \circledast n\ne 3\\ (*)\Leftrightarrow \left\{\begin{array}{l} n-3>0\\ \Delta <0\end{array} \right. \\ \Leftrightarrow \left\{\begin{array}{l} n>3\\ (n-2)^2-4(n-3)(n+3) <0\end{array} \right. \\ \Leftrightarrow \left\{\begin{array}{l} n>3\\ -3n^2-4n+40<0\end{array} \right. \\ \Leftrightarrow \left\{\begin{array}{l} n>3\\ \left[\begin{array}{l} n<\dfrac{-2-2\sqrt{31}}{3}\\ n>\dfrac{-2+2\sqrt{31}}{3}\end{array} \right. \end{array} \right. \\ \Leftrightarrow n>\dfrac{-2+2\sqrt{31}}{3}$