Tìm GTNN của : (trog ảnh) Question Tìm GTNN của : (trog ảnh) in progress 0 Môn Toán Thiên Hương 4 years 2021-05-18T20:23:01+00:00 2021-05-18T20:23:01+00:00 2 Answers 14 views 0
Answers ( )
Đáp án:
Đặt `A = 4x^2 – 4x – 3|2x – 1| + 3`
Ta có :
`A = (4x^2 – 4x + 1) – 3|2x – 1| + 2`
`= (2x – 1)^2 – 3|2x – 1| + 2`
`= |2x – 1|^2 – 3|2x – 1| + 2`
`= |2x – 1|^2 – 2 . |2x – 1| . 3/2 + 9/4 – 1/4`
`= (|2x – 1| – 3/2)^2 – 1/4 >= -1/4`
Dấu “=” xảy ra `<=> |2x – 1| – 3/2 = 0 <=> |2x – 1| = 3/2`
`<=> ` \(\left[ \begin{array}{l}2x – 1 =\dfrac{3}{2} \\2x – 1 = \dfrac{-3}{2}\end{array} \right.\)
`<=> ` \(\left[ \begin{array}{l}x=\dfrac{5}{4}\\x=\dfrac{-1}{4}\end{array} \right.\)
Vậy `GTNN` của `A` là `-1/4 <=>` \(\left[ \begin{array}{l}x=\dfrac{5}{4}\\x=\dfrac{-1}{4}\end{array} \right.\)
Giải thích các bước giải:
`4x^2-4x-3|2x-1|+3`
`=4x^2-4x-3|2x-1|+1+2`
`=4x^2-4x+1-3|2x-1|+2`
`=(4x^2-4x+1)-3|2x-1|+2`
`=[(2x)^2-2.2x+1^2]-3|2x-1|+2`
`=(2x-1)^2-3|2x-1|+2`
`=|2x-1|^2-3|2x-1|+2`
`=|2x-1|^2-2|2x-1|3/2+(3/2)^2-1/4`
`=(|2x-1|-3/2)^2-1/4`
Do `(|2x-1|-3/2)^2≥0`
`⇒(|2x-1|-3/2)^2-1/4≥-1/4`
Dấu “=” xảy ra khi `(|2x-1|-3/2)^2=0`
`⇔|2x-1|-3/2=0`
`⇔|2x-1|=3/2`
`⇔` \(\left[ \begin{array}{l}2x-1=\dfrac{3}{2}\\2x-1=-\dfrac{3}{2}\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}2x=\dfrac{5}{2}\\2x=-\dfrac{1}{2}\end{array} \right.\)
`⇔` \(\left[ \begin{array}{l}x=\dfrac{5}{4}\\x=-\dfrac{1}{4}\end{array} \right.\)
Vậy GTNN của phương trình `4x^2-4x-3|2x-1|+3=-1/4` khi `x=5/4` hoặc `x=-1/4`