please help in it is simple question  {x}^{2} - 4 \\ {x}^{3} - 27

Question

please help in it is simple question
 {x}^{2}  - 4 \\  {x}^{3}  - 27

in progress 0
Neala 4 years 2021-07-19T23:39:39+00:00 2 Answers 8 views 0

Answers ( )

    0
    2021-07-19T23:41:18+00:00

    1)

    \sf {x}^{2}  - 4 \\ \sf \: Use \: the \: sum \: product \: method

    \sf {x}^{2}  - 4 \\  =  \sf{x}^{2}  + 2x - 2x - 4

    \sf \: Now \: take \: the \: common \: factor \: out \\  \sf{x}^{2}  + 2x - 2x - 4 \\\sf =  x(x + 2) - 2(x  + 2)

    \sf \: Factorize \: it \\ \sf \: x(x + 2) - 2(x + 2) \\  = \sf(x - 2)(x + 2)

    Answer ⟶ \boxed{\bf{(x-2)(x+2)}}

    _________________________

    2)

    \sf {x}^{3}  - 27

    \sf {x}^{3}  \: and \: 27 \: ( {3}^{3} ) \: are \: perfect \: real \: cubes.

    \sf \: So \: use \: the \: algebraic \: identity \:  \\ \sf {a}^{3}  -  {b}^{3}  = (a - b)( {a}^{2}  + ab +  {b}^{2} )

    \sf \: a =  \sqrt[3]{x^{3}}  = x \\ \sf \: b =  \sqrt[3]{27}  = 3

      \sf \:  {x}^{3}  -  {3}^{3}  \\  \sf= (x - 3)( {x}^{2}  + 3x +  {3}^{2} ) \\  = \sf \: (x - 3)( {x}^{2}  + 3x + 9)

    Answer ⟶ \boxed{\bf{(x-3)(x^{2}+3x+9)}}

    0
    2021-07-19T23:41:20+00:00

    x^2 – 4 = (x-2) x (x + 2)
    x^3 – 27 = (x-3) x (x^2+ 3x+9)

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )