Ladonna 964 Questions 2k Answers 0 Best Answers 14 Points View Profile0 Ladonna Asked: Tháng Mười Một 24, 20202020-11-24T16:49:24+00:00 2020-11-24T16:49:24+00:00In: Môn Toánmn làm hộ mik vs ak mik đg cần gấp lắm Cảm ơn mn trước nha0mn làm hộ mik vs ak mik đg cần gấp lắm Cảm ơn mn trước nha ShareFacebookRelated Questions 1. "could you please show me the way to the market?" he said to her -> he asked her.............................................................. 2."w Giúp ạ ...cảm ơn trước :) Hiệu hai số là 738 tìm hai số khi biết số thứ nhất giảm 10 lần thì bằng số thứ ...1 AnswerOldestVotedRecentOrla Orla 970 Questions 2k Answers 0 Best Answers 23 Points View Profile Orla Orla 2020-11-24T16:50:59+00:00Added an answer on Tháng Mười Một 24, 2020 at 4:50 chiều Giải thích các bước giải:Ta có:\(\begin{array}{l}9,\\O = \left( {\dfrac{1}{{\sqrt x – 1}} + \dfrac{1}{{\sqrt x + 1}}} \right).\dfrac{{\sqrt x – 1}}{2}\\ = \dfrac{{\left( {\sqrt x + 1} \right) + \left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\sqrt x – 1}}{2}\\ = \dfrac{{2\sqrt x }}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\sqrt x – 1}}{2}\\ = \dfrac{{\sqrt x }}{{\sqrt x + 1}}\\10,\\I = \left( {\dfrac{{\sqrt x }}{{x – 4}} + \dfrac{1}{{\sqrt x – 2}}} \right):\dfrac{2}{{\sqrt x – 2}}\\ = \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}} + \dfrac{1}{{\sqrt x – 2}}} \right).\dfrac{{\sqrt x – 2}}{2}\\ = \left( {\dfrac{{\sqrt x + \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}} \right).\dfrac{{\sqrt x – 2}}{2}\\ = \dfrac{{2\sqrt x + 2}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}.\dfrac{{\sqrt x – 2}}{2}\\ = \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}\\11,\\J = \left( {\dfrac{{\sqrt x }}{{x – 9}} – \dfrac{1}{{\sqrt x + 3}}} \right):\left( {\dfrac{1}{{\sqrt x – 3}} – \dfrac{1}{{\sqrt x }}} \right)\\ = \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}} – \dfrac{1}{{\sqrt x + 3}}} \right):\dfrac{{\sqrt x – \left( {\sqrt x – 3} \right)}}{{\left( {\sqrt x – 3} \right).\sqrt x }}\\ = \dfrac{{\sqrt x – \left( {\sqrt x – 3} \right)}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}}:\dfrac{3}{{\sqrt x \left( {\sqrt x – 3} \right)}}\\ = \dfrac{3}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x \left( {\sqrt x – 3} \right)}}{3}\\ = \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\12,\\P = \dfrac{{\sqrt x + 1}}{{x – 1}} – \dfrac{{x + 2}}{{x\sqrt x – 1}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\ = \dfrac{{\sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}} – \dfrac{{x + 2}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\ = \dfrac{1}{{\sqrt x – 1}} – \dfrac{{x + 2}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\ = \dfrac{{\left( {x + \sqrt x + 1} \right) – \left( {x + 2} \right) – \left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\ = \dfrac{{x + \sqrt x + 1 – x – 2 – x + 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\ = \dfrac{{ – x + \sqrt x }}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\ = \dfrac{{ – \sqrt x }}{{x + \sqrt x + 1}}\end{array}\)0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Orla Orla
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
9,\\
O = \left( {\dfrac{1}{{\sqrt x – 1}} + \dfrac{1}{{\sqrt x + 1}}} \right).\dfrac{{\sqrt x – 1}}{2}\\
= \dfrac{{\left( {\sqrt x + 1} \right) + \left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\sqrt x – 1}}{2}\\
= \dfrac{{2\sqrt x }}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}}.\dfrac{{\sqrt x – 1}}{2}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 1}}\\
10,\\
I = \left( {\dfrac{{\sqrt x }}{{x – 4}} + \dfrac{1}{{\sqrt x – 2}}} \right):\dfrac{2}{{\sqrt x – 2}}\\
= \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}} + \dfrac{1}{{\sqrt x – 2}}} \right).\dfrac{{\sqrt x – 2}}{2}\\
= \left( {\dfrac{{\sqrt x + \left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}} \right).\dfrac{{\sqrt x – 2}}{2}\\
= \dfrac{{2\sqrt x + 2}}{{\left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}.\dfrac{{\sqrt x – 2}}{2}\\
= \dfrac{{\sqrt x + 1}}{{\sqrt x + 2}}\\
11,\\
J = \left( {\dfrac{{\sqrt x }}{{x – 9}} – \dfrac{1}{{\sqrt x + 3}}} \right):\left( {\dfrac{1}{{\sqrt x – 3}} – \dfrac{1}{{\sqrt x }}} \right)\\
= \left( {\dfrac{{\sqrt x }}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}} – \dfrac{1}{{\sqrt x + 3}}} \right):\dfrac{{\sqrt x – \left( {\sqrt x – 3} \right)}}{{\left( {\sqrt x – 3} \right).\sqrt x }}\\
= \dfrac{{\sqrt x – \left( {\sqrt x – 3} \right)}}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}}:\dfrac{3}{{\sqrt x \left( {\sqrt x – 3} \right)}}\\
= \dfrac{3}{{\left( {\sqrt x – 3} \right)\left( {\sqrt x + 3} \right)}}.\dfrac{{\sqrt x \left( {\sqrt x – 3} \right)}}{3}\\
= \dfrac{{\sqrt x }}{{\sqrt x + 3}}\\
12,\\
P = \dfrac{{\sqrt x + 1}}{{x – 1}} – \dfrac{{x + 2}}{{x\sqrt x – 1}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\
= \dfrac{{\sqrt x + 1}}{{\left( {\sqrt x – 1} \right)\left( {\sqrt x + 1} \right)}} – \dfrac{{x + 2}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\
= \dfrac{1}{{\sqrt x – 1}} – \dfrac{{x + 2}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}} – \dfrac{{\sqrt x + 1}}{{x + \sqrt x + 1}}\\
= \dfrac{{\left( {x + \sqrt x + 1} \right) – \left( {x + 2} \right) – \left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right)}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{x + \sqrt x + 1 – x – 2 – x + 1}}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ – x + \sqrt x }}{{\left( {\sqrt x – 1} \right)\left( {x + \sqrt x + 1} \right)}}\\
= \dfrac{{ – \sqrt x }}{{x + \sqrt x + 1}}
\end{array}\)