Hãy tính M = 2^2010 – (2^2009 + 2^2008 + …. + 2^1 + 2^0). Question Hãy tính M = 2^2010 – (2^2009 + 2^2008 + …. + 2^1 + 2^0). in progress 0 Môn Toán Dulcie 4 years 2020-10-14T05:12:38+00:00 2020-10-14T05:12:38+00:00 2 Answers 96 views 0
Answers ( )
`Answer :`
`M = 2^2010 – (2^2009 + 2^2008 + …. + 2^1 + 2^0)`
Ta có : Đặt `A = (2^2009 + 2^2008 + …. + 2^1 + 2^0)`
`=> A = 2^2009 + 2^2008 + …. + 2^1 + 2^0`
`= 2^0+ 2^1 + …. + 2^2008 + 2^2009`
Nhân `2` với `A` :
`=> 2A = 2 +2^2 +….+2^2009 + 2^2010`
`2A -A = ( 2 +2^2 +….+2^2009 + 2^2010) – (2^0+ 2^1 + …. + 2^2008 + 2^2009)`
`=> A = 1 – 2^2010`
`=> M = 2^2010 – 1-2^2010`
`=> M = -1 `
Đặt `N=2^2009 + 2^2008 + …. + 2^1 + 2^0`
`N=2^0+2^1+…+2^2008+2^2009`
`2N=2+2^2+…+2^2009+2^2010`
`2N-N=2^2010-1`
`N=2^2010-1`
`M=2^2010-N`
`M=2^2010-2^2010-1`
`M=-1`