Giúp mình câu e đi ạ Question Giúp mình câu e đi ạ in progress 0 Môn Toán Trung Dũng 4 years 2021-05-18T03:04:52+00:00 2021-05-18T03:04:52+00:00 1 Answers 8 views 0
Answers ( )
Giải thích các bước giải:
a) Ta có:
$\begin{array}{l}
\left\{ \begin{array}{l}
\widehat Bchung\\
\widehat {AHB} = \widehat {CAB} = {90^0}
\end{array} \right.\\
\Rightarrow \Delta ABH \sim \Delta CBA\left( {g.g} \right)
\end{array}$
b) Ta có:
$\begin{array}{l}
\Delta ABH \sim \Delta CBA\left( {g.g} \right)\\
\Rightarrow \dfrac{{AH}}{{CA}} = \dfrac{{AB}}{{CB}}\\
\Rightarrow \dfrac{{AH}}{{AB}} = \dfrac{{AC}}{{BC}}
\end{array}$
c) Ta có:
$\begin{array}{l}
\left\{ \begin{array}{l}
\widehat {AHB} = \widehat {CHA} = {90^0}\\
\widehat {ABH} = \widehat {CAH}\left( { + \widehat {HAB} = {{90}^0}} \right)
\end{array} \right.\\
\Rightarrow \Delta AHB \sim \Delta CHA\left( {g.g} \right)\\
\Rightarrow \dfrac{{AH}}{{CH}} = \dfrac{{HB}}{{HA}}\\
\Rightarrow A{H^2} = CH.BH
\end{array}$
d) Ta có:
$\begin{array}{l}
\Delta ABC;\widehat A = {90^0};AB = 15cm;AC = 20cm\\
\Rightarrow BC = \sqrt {A{B^2} + A{C^2}} = 25cm
\end{array}$
Mà $\dfrac{{AH}}{{AB}} = \dfrac{{AC}}{{BC}} \Rightarrow AH = \dfrac{{AB.AC}}{{BC}} = 12cm$
Lại có:
$\begin{array}{l}
\Delta ABH \sim \Delta CBA\left( {g.g} \right)\\
\Rightarrow \dfrac{{BH}}{{BA}} = \dfrac{{AB}}{{BC}}\\
\Rightarrow BH = \dfrac{{A{B^2}}}{{BC}} = 9cm\\
\Rightarrow CH = BC – BH = 16cm\\
\Rightarrow \dfrac{{BH}}{{CH}} = \dfrac{9}{{16}}
\end{array}$
Mà: $\dfrac{{DH}}{{AH}} = \dfrac{{6,75}}{{12}} = \dfrac{9}{{16}}$
$ \Rightarrow \dfrac{{BH}}{{CH}} = \dfrac{{DH}}{{AH}}$
Khi đó:
$\begin{array}{l}
\left\{ \begin{array}{l}
\widehat {BHD} = \widehat {CHA} = {90^0}\\
\dfrac{{BH}}{{CH}} = \dfrac{{DH}}{{AH}}
\end{array} \right.\\
\Rightarrow \Delta BHD \sim \Delta CHA\left( {g.g} \right)\\
\Rightarrow \widehat {HBD} = \widehat {HCA}\\
\Rightarrow BD//AC\\
\Rightarrow BD \bot BA
\end{array}$
d) Ta có:
$\begin{array}{l}
\left\{ \begin{array}{l}
\widehat {ABF} = \widehat {HBE} = \dfrac{1}{2}\widehat {ABC}\\
\widehat {BAF} = \widehat {BHE} = {90^0}
\end{array} \right.\\
\Rightarrow \Delta ABF \sim \Delta HBE\left( {g.g} \right)\\
\Rightarrow \widehat {AFB} = \widehat {HEB}\\
\Rightarrow \widehat {AFE} = \widehat {AEF}\\
\Rightarrow \Delta AEF \text{cân ở A}\\
\Rightarrow AE = AF
\end{array}$