Ladonna 864 Questions 2k Answers 0 Best Answers 15 Points View Profile0 Ladonna Asked: Tháng Mười 25, 20202020-10-25T11:04:32+00:00 2020-10-25T11:04:32+00:00In: Môn ToánGiải pt : cos( 2x + 2π/ 3 ) + 3.cos( x + π/3 ) +1 = 00Giải pt : cos( 2x + 2π/ 3 ) + 3.cos( x + π/3 ) +1 = 0 ShareFacebookRelated Questions Một hình thang có đáy lớn là 52cm ; đáy bé kém đáy lớn 16cm ; chiều cao kém đáy ... Useful news and important articles APROTININ FROM BOVINE LUNG CELL CULTURE купить онлайн1 AnswerOldestVotedRecentPhilomena 872 Questions 2k Answers 0 Best Answers 5 Points View Profile Philomena 2020-10-25T11:06:11+00:00Added an answer on Tháng Mười 25, 2020 at 11:06 sáng Đáp án:$x = \dfrac{\pi}{6} +k\pi \quad (k \in \Bbb Z)$Giải thích các bước giải:$\begin{array}{l}\cos\left(2x + \dfrac{2\pi}{3}\right) + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow \cos\left[2\left(x + \dfrac{\pi}{3}\right)\right] + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow 2\cos^2\left(x + \dfrac{\pi}{3}\right) – 1 + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow \cos\left(x + \dfrac{\pi}{3}\right)\left[2\cos\left(x + \dfrac{\pi}{3}\right) + 3 \right] = 0\\ \Leftrightarrow \left[\begin{array}{l}\cos\left(x + \dfrac{\pi}{3}\right) = 0\\\cos\left(x + \dfrac{\pi}{3}\right) = – \dfrac{3}{2} \quad (loại)\end{array}\right.\\ \Leftrightarrow x + \dfrac{\pi}{3} = \dfrac{\pi}{2} + k\pi\\ \Leftrightarrow x = \dfrac{\pi}{6} +k\pi \quad (k \in \Bbb Z)\end{array}$0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Philomena
Đáp án:
$x = \dfrac{\pi}{6} +k\pi \quad (k \in \Bbb Z)$
Giải thích các bước giải:
$\begin{array}{l}\cos\left(2x + \dfrac{2\pi}{3}\right) + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow \cos\left[2\left(x + \dfrac{\pi}{3}\right)\right] + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow 2\cos^2\left(x + \dfrac{\pi}{3}\right) – 1 + 3\cos\left(x + \dfrac{\pi}{3}\right) + 1 = 0\\ \Leftrightarrow \cos\left(x + \dfrac{\pi}{3}\right)\left[2\cos\left(x + \dfrac{\pi}{3}\right) + 3 \right] = 0\\ \Leftrightarrow \left[\begin{array}{l}\cos\left(x + \dfrac{\pi}{3}\right) = 0\\\cos\left(x + \dfrac{\pi}{3}\right) = – \dfrac{3}{2} \quad (loại)\end{array}\right.\\ \Leftrightarrow x + \dfrac{\pi}{3} = \dfrac{\pi}{2} + k\pi\\ \Leftrightarrow x = \dfrac{\pi}{6} +k\pi \quad (k \in \Bbb Z)\end{array}$