Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given

Question

Find the exact length of the curve. x=et+e−t, y=5−2t, 0≤t≤2 For a curve given by parametric equations x=f(t) and y=g(t), arc length is given by

in progress 0
Amity 4 years 2021-07-22T23:28:31+00:00 1 Answers 53 views 0

Answers ( )

    0
    2021-07-22T23:29:55+00:00

    The length of a curve C parameterized by a vector function r(t) = x(t) i + y(t) j over an interval a ≤ t ≤ b is

    \displaystyle\int_C\mathrm ds = \int_a^b \sqrt{\left(\frac{\mathrm dx}{\mathrm dt}\right)^2+\left(\frac{\mathrm dy}{\mathrm dt}\right)^2} \,\mathrm dt

    In this case, we have

    x(t) = exp(t ) + exp(-t )   ==>   dx/dt = exp(t ) – exp(-t )

    y(t) = 5 – 2t   ==>   dy/dt = -2

    and [a, b] = [0, 2]. The length of the curve is then

    \displaystyle\int_0^2 \sqrt{\left(e^t-e^{-t}\right)^2+(-2)^2} \,\mathrm dt = \int_0^2 \sqrt{e^{2t}-2+e^{-2t}+4}\,\mathrm dt

    =\displaystyle\int_0^2 \sqrt{e^{2t}+2+e^{-2t}} \,\mathrm dt

    =\displaystyle\int_0^2\sqrt{\left(e^t+e^{-t}\right)^2} \,\mathrm dt

    =\displaystyle\int_0^2\left(e^t+e^{-t}\right)\,\mathrm dt

    =\left(e^t-e^{-t}\right)\bigg|_0^2 = \left(e^2-e^{-2}\right)-\left(e^0-e^{-0}\right) = \boxed{e^2-\frac1{e^2}}

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )