find the derivative using the limit process of f (x) = – 10x

Question

find the derivative using the limit process of f (x) = – 10x

in progress 0
Khải Quang 3 years 2021-08-06T03:56:55+00:00 1 Answers 36 views 0

Answers ( )

    0
    2021-08-06T03:58:48+00:00

    Answer:

    \frac{d}{dx} f(x) =-10

    General Formulas and Concepts:

    Calculus

    • Derivative Notation
    • Definition of a Derivative: \lim_{h \to 0} \frac{f(x+h)-f(x)}{h}

    Step-by-step explanation:

    Step 1: Define

    f(x) = -10x

    Step 2: Find Derivative

    1. Substitute:                         \frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10(x + h)-(-10x)}{h}
    2. Distribute -10:                    \frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10x -10h-(-10x)}{h}
    3. Distribute -1:                      \frac{d}{dx} f(x)= \lim_{h \to 0} \frac{-10x -10h+10x}{h}
    4. Combine like terms:         \frac{d}{dx} f(x)=  \lim_{h \to 0} \frac{-10h}{h}
    5. Divide:                               \frac{d}{dx} f(x)=  \lim_{h \to 0} -10
    6. Evaluate:                           \frac{d}{dx} f(x)=-10

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )