Chứng minh rằng: $\dfrac{cos4x+cos2x}{sin4x-sin2x}=cotx$ Question Chứng minh rằng: $\dfrac{cos4x+cos2x}{sin4x-sin2x}=cotx$ in progress 0 Môn Toán Orla Orla 4 years 2021-05-18T11:31:53+00:00 2021-05-18T11:31:53+00:00 1 Answers 6 views 0
Answers ( )
Giải thích các bước giải:
$\begin{array}{l}
\dfrac{{\cos 4x + \cos 2x}}{{\sin 4x – \sin 2x}}\\
= \dfrac{{2{{\cos }^2}2x + \cos 2x – 1}}{{\sin 2x\left( {2\cos 2x – 1} \right)}}\\
= \dfrac{{\left( {2\cos 2x – 1} \right)\left( {\cos 2x + 1} \right)}}{{\sin 2x\left( {2\cos 2x – 1} \right)}}\\
= \dfrac{{\cos 2x + 1}}{{\sin 2x}}\\
= \dfrac{{2{{\cos }^2}x}}{{2\sin x\cos x}}\\
= \dfrac{{\cos x}}{{\sin x}}\\
= \cot x
\end{array}$