Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independ

Question

Use variation of parameters to find a general solution to the differential equation given that the functions y1 and y2 are linearly independent solutions to the corresponding homogeneous equation for t > 0.
ty” + (2t – 1)y’ – 2y = 7t2 e-2t y1 = 2t – 1, y2 = e-2t

in progress 0
Thiên Thanh 3 years 2021-07-29T01:44:48+00:00 1 Answers 10 views 0

Answers ( )

    0
    2021-07-29T01:46:37+00:00

    Recall that variation of parameters is used to solve second-order ODEs of the form

    y”(t) + p(t) y'(t) + q(t) y(t) = f(t)

    so the first thing you need to do is divide both sides of your equation by t :

    y” + (2t – 1)/t y’ – 2/t y = 7t

    You’re looking for a solution of the form

    y=y_1u_1+y_2u_2

    where

    u_1(t)=\displaystyle-\int\frac{y_2(t)f(t)}{W(y_1,y_2)}\,\mathrm dt

    u_2(t)=\displaystyle\int\frac{y_1(t)f(t)}{W(y_1,y_2)}\,\mathrm dt

    and W denotes the Wronskian determinant.

    Compute the Wronskian:

    W(y_1,y_2) = W\left(2t-1,e^{-2t}\right) = \begin{vmatrix}2t-1&e^{-2t}\\2&-2e^{-2t}\end{vmatrix} = -4te^{-2t}

    Then

    u_1=\displaystyle-\int\frac{7te^{-2t}}{-4te^{-2t}}\,\mathrm dt=\frac74\int\mathrm dt = \frac74t

    u_2=\displaystyle\int\frac{7t(2t-1)}{-4te^{-2t}}\,\mathrm dt=-\frac74\int(2t-1)e^{2t}\,\mathrm dt=-\frac74(t-1)e^{2t}

    The general solution to the ODE is

    y = C_1(2t-1) + C_2e^{-2t} + \dfrac74t(2t-1) - \dfrac74(t-1)e^{2t}e^{-2t}

    which simplifies somewhat to

    \boxed{y = C_1(2t-1) + C_2e^{-2t} + \dfrac74(2t^2-2t+1)}

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )