solve 5(2y+1)=4y+10. this is for algebra 1

Question

solve 5(2y+1)=4y+10. this is for algebra 1

in progress 0
Philomena 4 years 2021-08-05T09:22:00+00:00 2 Answers 17 views 0

Answers ( )

    0
    2021-08-05T09:23:10+00:00

    5(2y+1)=4y+10(multiply 5 to 2y and 1)
    10y+5=4y+10(subtract 5 from 5 and 10)
    10y=4y+5(subtract 4y from 4y and 10y)
    6y=5(divide 6 by 6y and 5)
    y=0.83

    0
    2021-08-05T09:23:54+00:00

    Answer:

    y=5/6\approx0.83

    Step-by-step explanation:

    So we have the equation:

    5(2y+1)=4y+10

    First, let’s distribute the left side of our equation:

    5(2y)+5(1)=4y+10

    Multiply:

    10y+5=4y+10

    Now, let’s isolate the y-variable. Subtract 4y from both sides:

    (10y+5)-4y=(4y+10)-4y

    The right side cancels. Subtract on the left. So:

    6y+5=10

    Now, subtract 5 from both sides:

    (6y+5)-5=(10)-5

    The left side cancels. Subtract on the right:

    6y=5

    Now, divide both sides by 6. So:

    \frac{6y}{6}=\frac{5}{6}

    The left will cancel. Therefore:

    y=5/6\approx0.83

    And we’re done!

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )