Share
Giải pt lượng giác sau a . tan^2 2x . tan^2 3x = 1 b. cot (3x + 2π/3 ). tan (x – π/3 ) = 1 Giúp giùm e vs
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Answers ( )
\[\begin{array}{l}
a)\,\,{\tan ^2}2x.{\tan ^2}3x = 1\,\,\,\left( * \right)\\
DK:\,\,\left\{ \begin{array}{l}
\cos 2x \ne 0\\
\cos 3x \ne 0
\end{array} \right..\\
\Rightarrow \left( * \right) \Leftrightarrow \frac{{{{\sin }^2}2x}}{{{{\cos }^2}2x}}.\frac{{{{\sin }^2}3x}}{{{{\cos }^2}3x}} = 1\\
\Leftrightarrow {\left( {\sin 2x.\sin 3x} \right)^2} = {\left( {\cos 2x.\cos 3x} \right)^2}\\
\Leftrightarrow {\left[ {\frac{1}{2}\left( {\cos x – \cos 5x} \right)} \right]^2} = {\left[ {\frac{1}{2}\left( {\cos 5x + \cos x} \right)} \right]^2}\\
\Leftrightarrow {\left( {\cos x – \cos 5x} \right)^2} = {\left( {\cos x + \cos 5x} \right)^2}\\
\Leftrightarrow – 2\cos x.\cos 5x = 2\cos x.\cos 5x\\
\Leftrightarrow \cos x.\cos 5x = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\cos x = 0\\
\cos 5x = 0
\end{array} \right..\\
b)\,\,\,\cot \left( {3x + \frac{{2\pi }}{3}} \right).tan\left( {x – \frac{\pi }{3}} \right) = 1\,\,\,\left( * \right)\\
DK:\,\,\,\left\{ \begin{array}{l}
\cos \left( {x – \frac{\pi }{3}} \right) \ne 0\\
\sin \left( {3x\_\frac{{2\pi }}{3}} \right) \ne 0
\end{array} \right.\\
\left( * \right) \Leftrightarrow \frac{{\cos \left( {3x + \frac{{2\pi }}{3}} \right)}}{{\sin \left( {3x\_\frac{{2\pi }}{3}} \right)}}.\frac{{\sin \left( {x – \frac{\pi }{3}} \right)}}{{\cos \left( {x – \frac{\pi }{3}} \right)}} = 1\\
\Leftrightarrow \cos \left( {3x + \frac{{2\pi }}{3}} \right).\sin \left( {x – \frac{\pi }{3}} \right) = \sin \left( {3x – \frac{{2\pi }}{3}} \right).\cos \left( {x – \frac{\pi }{3}} \right)\\
\Leftrightarrow \sin \left( {x – \frac{\pi }{3} – 3x – \frac{{2\pi }}{3}} \right) + \sin \left( {x – \frac{\pi }{3} + 3x + \frac{{2\pi }}{3}} \right) = \sin \left( {3x – \frac{{2\pi }}{3} – x + \frac{\pi }{3}} \right) + \sin \left( {3x – \frac{{2\pi }}{3} + x – \frac{\pi }{3}} \right)\\
\Leftrightarrow \sin \left( { – 2x – \pi } \right) + \sin \left( {4x + \frac{\pi }{3}} \right) = \sin \left( {2x – \frac{\pi }{3}} \right) + \sin \left( {4x – \pi } \right)\\
\Leftrightarrow \sin \left( {2x + \pi } \right) + \sin \left( {4x + \frac{\pi }{3}} \right) = \sin \left( {2x – \frac{\pi }{3}} \right) – \sin \left( {\pi – 4x} \right)\\
\Leftrightarrow – \sin 2x + \sin 4x.\cos \frac{\pi }{3} + \cos 4x.\sin \frac{\pi }{3} = \sin 2x.cos\frac{\pi }{3} – \cos 2x.\sin \frac{\pi }{3} – \sin 4x\\
\Leftrightarrow \frac{1}{2}\sin 4x + \frac{{\sqrt 3 }}{2}\cos 4x – \sin 2x = \frac{1}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x – \sin 4x\\
\Leftrightarrow \frac{3}{2}\sin 4x + \frac{{\sqrt 3 }}{2}\cos 4x = \frac{3}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x\\
\Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 4x + \frac{1}{2}\cos 4x = \frac{{\sqrt 3 }}{2}\sin 2x – \frac{1}{2}\cos 2x\\
\Leftrightarrow \sin \left( {4x + \frac{\pi }{6}} \right) = \sin \left( {2x – \frac{\pi }{6}} \right).
\end{array}\]
Em giải các phương trình lượng giác cơ bản nhé.
Để tìm câu trả lời chính xác các em hãy tham khảo giai pt luong giac các nguồn hoc24.vn, lazi.vn, hoidap247.com để thầy cô và các chuyên gia hỗ trợ các em nhé!