cos5xcos4x=cos3xcos2x Question cos5xcos4x=cos3xcos2x in progress 0 Môn Toán Eirian 4 years 2020-10-30T04:30:28+00:00 2020-10-30T04:30:28+00:00 2 Answers 98 views 0
Answers ( )
` cos5xcos4x = cos3xcos2x `
` <=> 1/2 . (cosx + cos9x) = 1/2 . (cosx + cos5x) `
` <=> \frac{cosx}{2} + \frac{cos9x}{2} = \frac{cosx}{2} + \frac{cos5x}{2} `
` <=> \frac{cos9x}{2} = \frac{cos5x}{2} `
` <=> cos9x – cos5x = 0 `
` <=> -2sin7xsin2x = 0 `
` <=> sin7xsin2x = 0 `
` <=> ` \(\left[ \begin{array}{l}sin7x=0\\sin5x=0\end{array} \right.\)
` <=> ` \(\left[ \begin{array}{l}x=\frac{kπ}{7}\\x=\frac{kπ}{2}\end{array} \right.\) `(k ∈ Z)`
cos5x . cos4x = cos3x . cos2x
⇔ 1/2.[cos(5x-4x)+cos(5x+4x)] = 1/2.[cos(3x-2x)+cos(3x+2x)]
⇔ 1/2.[cosx + cos9x] = 1/2.[cosx + cos5x]
⇔ 1/2.cosx + 1/2.cos9x = 1/2.cosx + 1/2.cos5x
đơn giản 1/2
⇔ cosx + cos9x = cosx + cos5x
⇔ cosx + cos9x – cosx – cos5x=0
⇔ cos9x – cos5x = 0
⇔ -2.sin7x.sin2x = 0
⇔ sin7x.sin2x = 0
⇔ \(\left[ \begin{array}{l}sin7x=0\\sin2x=0\end{array} \right.\)
⇔ \(\left[ \begin{array}{l}x=k.π/7\\x=k.π/2\end{array} \right.\) (k∈Z)