CMR: A=1/3-2/3^2+3/3^3-4/3^4+…+99/3^99-100/3^100 Question CMR: A=1/3-2/3^2+3/3^3-4/3^4+…+99/3^99-100/3^100 in progress 0 Môn Toán Kim Chi 4 years 2021-05-14T13:16:41+00:00 2021-05-14T13:16:41+00:00 1 Answers 47 views 0
Answers ( )
Đáp án:
Giải thích các bước giải:
Ta có: A=1/3 – 2/3^2+3/3^3 – 4/3^4+ … – 100/3^100
=>3A=1 -2/3 +3/3^2 – 4/3^3+ … – 100/3^99
=>4A=A+3A=1-1/3+1/3^2-1/3^3+…-1/3^99 – 100/3^100
=>12A=3.4A=3-1+1/3-1/3^2+…-1/3^98 – 100/3^99
=>16A=12A+4A=3-1/3^99-100/3^99-100/3^1…
<=> 16A=3-101/3^99-100/3^100
<=> A=3/10-(101/3^99+100/3^100)/16 < 3/10
Suy ra A<3/10