Cho các số thực dương x,y,z thỏa mãn điều kiện x+y+z=3 . Tìm GTNN của P=1+$\frac{3}{xy+yz+xz}$

Question

Cho các số thực dương x,y,z thỏa mãn điều kiện x+y+z=3 . Tìm GTNN của
P=1+$\frac{3}{xy+yz+xz}$

in progress 0
MichaelMet 4 years 2021-04-29T10:44:30+00:00 1 Answers 42 views 0

Answers ( )

    0
    2021-04-29T10:46:00+00:00

    Đáp án:

     Ta có : 

    `(x – y)^2 + (y – z)^2 + (z – x)^2 >= 0`

    `=> 2x^2 + 2y^2 + 2z^2 – 2xy -2yz -2zx >= 0`

    `=> 2(x^2 + y^2 + z^2) >= 2(xy + yz + zx)`

    `=> x^2 + y^2 + z^2 >= xy + yz + zx`

    `=> x^2 + y^2 + z^2 + 2(xy + yz + zx) >= xy + yz + zx + 2(xy + yz + zx)`

    `=> (x + y + z)^2 >= 3(xy + yz + zx)`

    Do đó : `P = 1 + 3/(xy + yz + zx) = 1 + 9/[3(xy + yz + zx)] >= 1 + 9/(x + y + z)^2 = 1 + 9/3^2 = 2`

    Dấu “=” xảy ra `<=> x = y=  z = 1`

    Vậy GTNN của `P` là `2 <=> x = y = z = 1`

    Giải thích các bước giải:

     

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )