Calcular el módulo del vector resultante de dos vectores fuerza de 9 [N] y 12 [N] concurrentes en un punto o, cuyas direcciones forman un án

Question

Calcular el módulo del vector resultante de dos vectores fuerza de 9 [N] y 12 [N] concurrentes en un punto o, cuyas direcciones forman un ángulo de a) 30˚ b) 45˚ y c) 90˚

in progress 0
Thu Thảo 4 years 2021-09-03T07:02:52+00:00 1 Answers 12 views 0

Answers ( )

    0
    2021-09-03T07:04:20+00:00

    Answer:

    a) 20.29N

    b) 19.43N

    c) 15N

    Explanation:

    To find the magnitude of the resultant vectors you first calculate the components of the vector for the angle in between them, next, you sum the x and y component, and finally, you calculate the magnitude.

    In all these calculations you can asume that one of the vectors coincides with the x-axis.

    a)

    F_R=(9cos(30\°)+12)\hat{i}+(9sin(30\°))\hat{j}\\\\F_R=(19.79N)\hat{i}+(4.5N)\hat{j}\\\\|F_R|=\sqrt{(19.79N)^2+(4.5N)^2}=20.29N

    b)

    F_R=(9cos(45\°)+12)\hat{i}+(9sin(45\°))\hat{j}\\\\F_R=(18.36N)\hat{i}+(6.36N)\hat{j}\\\\|F_R|=\sqrt{(18.36N)^2+(6.36N)^2}=19.43N

    c)

    F_R=(9cos(90\°)+12)\hat{i}+(9sin(90\°))\hat{j}\\\\F_R=(12N)\hat{i}+(9N)\hat{j}\\\\|F_R|=\sqrt{(12N)^2+(9N)^2}=15N

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )