A thin rod has a length of 0.288 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at

Question

A thin rod has a length of 0.288 m and rotates in a circle on a frictionless tabletop. The axis is perpendicular to the length of the rod at one of its ends. The rod has an angular velocity of 0.602 rad/s and a moment of inertia of 1.22 x 10-3 kg·m2. A bug standing on the axis decides to crawl out to the other end of the rod. When the bug (whose mass is 5 x 10-3 kg) gets where it’s going, what is the change in the angular velocity of the rod?

in progress 0
Ladonna 4 years 2021-07-20T20:05:49+00:00 1 Answers 20 views 0

Answers ( )

    0
    2021-07-20T20:06:58+00:00

    Answer:

    0.152724283058 rad/s

    Explanation:

    \omega_i=0.602\ rad/s

    In this system the angular momentum is conserved

    L_i=L_f\\\Rightarrow 1.22\times 10^{-3}\times 0.602=(1.22\times 10^{-3}+5\times 10^{-3}\times 0.288)\omega_f\\\Rightarrow \omega_f=\dfrac{1.22\times 10^{-3}\times 0.602}{(1.22\times 10^{-3}+5\times 10^{-3}\times 0.288^2)}\\\Rightarrow \omega_f=0.449275716942\ rad/s

    Change in angular velocity is

    \Delta \omega=0.449275716942-0.602=-0.152724283058\ rad/s

    The change in angular velocity is 0.152724283058 rad/s

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )