(x+5)^3-3=-67 11-(2x-3)^2=2 Question (x+5)^3-3=-67 11-(2x-3)^2=2 in progress 0 Môn Toán Khang Minh 4 years 2020-11-27T02:11:25+00:00 2020-11-27T02:11:25+00:00 2 Answers 64 views 0
Answers ( )
Đáp án:
Giải thích các bước giải:
$a) (x+5)^3-3=-67$
$→(x+5)^3=-67+3$
$→(x+5)^3=-64$
$→(x+5)^3=(-4)^3$
$⇔x+5=-4$
$→x=-4-5$
$→x=-9$
$b) 11-(2x-3)^2=2$
$→(2x-2)^2=11-2$
$→(2x-2)^2=9$
$→(2x-2)^2=3^2$
$→2x-2=±3$
$⇒$\(\left[ \begin{array}{l}(+)2x-2=3\\⇒2(x-1)=3\\⇒x-1=\dfrac{3}{2}\\⇒x=\dfrac{3}{2}+1\\⇒x=\dfrac{5}{2}\\(+)2x-2=-3\\⇒2(x-1)=-3\\⇒x-1=\dfrac{-3}{2}\\⇒x=\dfrac{-3}{2}+1\\⇒x=\dfrac{-1}{2}\end{array} \right.\)
Vậy $x=\dfrac{5}{2}$ hoặc $x=\dfrac{-1}{2}$
Xin hay nhất
a, `(x+5)^3-3=-67`
`=> (x+5)^3=-64`
`=> x + 5= -4`
`=> x = -9`
b, `11-(2x-3)^2=2`
`=> (2x-3)^2=9`
`=>` 2x – 3 = 3 hoặc 2x – 3 = – 3
`=>` 2x = 6 hoặc 2x = 0
`=>` x = 3 hoặc x = 0