Nelle missioni di Apollo sulla Luna,il modulo di comando orbitava a un altitudine di 110 km al di sopra della superficie lunare.Quanto tempo

Question

Nelle missioni di Apollo sulla Luna,il modulo di comando orbitava a un altitudine di 110 km al di sopra della superficie lunare.Quanto tempo impiegava il modulo di comando a completare un’orbita

in progress 0
Hải Đăng 4 years 2021-07-14T21:49:48+00:00 1 Answers 1623 views 0

Answers ( )

    0
    2021-07-14T21:51:10+00:00

    Answer:

    The period of orbit = 7143.41 s = 119.1 min = 1.984 hours

    Il periodo dell’orbita = 7143.41 s = 119.1 min = 1.984 hours

    Explanation:

    English Translation

    In Apollo’s missions to the moon, the command module orbited at an altitude of 110 km above the lunar surface. How long did the command module complete an orbit?

    Solution

    According to Kepler’s laws, the square of the period of orbit is proportional to the cube of the radius of orbit.

    T² ∝ r³

    T² = kr³

    where k = constant of proportionality. The constant of proportionality is then given as

    k = (4π²/GM)

    It’s all obtained from equating the gravitational force on the command module by the moon and the circular motion of the command module

    Let

    G = Gravitational constant

    M = mass of the moon

    m = mass of the command module

    r = radius of orbit

    w = angular velocity of the command module

    (GMm/r²) = mrw²

    (GM/r²) = rw²

    (GM/r³) = w²

    But angular velocity is given as

    w = (2π/T)

    w² = (4π²/T²)

    (GM/r³) = (4π²/T²)

    We then obtain

    T² = (4π²/GM)r³

    T² = kr³

    Mass of moon = M = (7.35 x 10²²) kg Gravitational constant = G = (6.67 x 10⁻¹¹) Nm²/kg²

    radius of moon = (1.74 x 10⁶) m

    Total radius of orbit = 110 km + (radius of the moon) = 110,000 + (1.74 x 10⁶)

    = (1.85 × 10⁶) m

    k = (4π²/GM) = (4π² ÷ [(6.67 x 10⁻¹¹) × (7.35 x 10²²)] = (8.059 × 10⁻¹²) kg/Nm²

    T² = kr³

    T² = (8.059 × 10⁻¹²) × (1.85 × 10⁶)³

    T² = 51,028,321.74

    T = √(51,028,321.74) = 7,143.41107175

    T = 7143.41 s = 119.1 min = 1.984 hours

    Hope this Helps!!!

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )