Share
In another case, p and 2p are the first and second term respectively of an arithmetic progression. The nth term is 336 and the of the first
Question
In another case, p and 2p are the first and second term respectively of an arithmetic progression. The nth term is 336 and the of the first n terms is 7224. Write down two equations in n and p and hence find the values of n and p
in progress
0
Mathematics
3 years
2021-07-20T05:18:08+00:00
2021-07-20T05:18:08+00:00 1 Answers
60 views
0
Answers ( )
Consecutive terms in this sequence differ by p.
First term: p
Second term: p + p = 2p
Third term: 2p + p = 3p
and so on. It follows that the n-th term satisfies
np = 336
Presumably you meant to say the “sum of the first n terms” is 7224, which is to say
p + 2p + 3p + … + np = 7224
which can be rewritten as
p (1 + 2 + 3 + … + n) = 7224
p (n (n + 1)/2) = 7224
n (n + 1) p = 14,448
Substitute the first equation in the second one and solve for n :
336 (n + 1) = 14,448
n + 1 = 43
n = 42
Now solve for p :
42p = 336
p = 8