Giup mình giải 2 phương trình sau với ạ Question Giup mình giải 2 phương trình sau với ạ in progress 0 Môn Toán Jezebel 4 years 2020-12-01T03:07:58+00:00 2020-12-01T03:07:58+00:00 1 Answers 46 views 0
Answers ( )
Đáp án:
${x = \arccos \left( {\dfrac{1}{{\sqrt 3 }}} \right) + k2\pi ;x = – \arccos \left( {\dfrac{1}{{\sqrt 3 }}} \right) + k2\pi ;x = \arccos \left( { – \dfrac{1}{{\sqrt 3 }}} \right) + k2\pi ;x = – \arccos \left( { – \dfrac{1}{{\sqrt 3 }}} \right) + k2\pi \left( {k \in Z} \right)}$
${3)x = \dfrac{\pi }{3} + k2\pi ;x = \dfrac{{2\pi }}{3} + k2\pi ;x = – \dfrac{\pi }{3} + k2\pi ;x = \dfrac{{2\pi }}{3} + k2\pi \left( {k \in Z} \right)}$
Giải thích các bước giải:
$\begin{array}{l}
2)3\sin x{\cos ^2}x – 6{\cos ^2}x – \sin x + 2 = 0\\
\Leftrightarrow 3{\cos ^2}x\left( {\sin x – 2} \right) – \left( {\sin x – 2} \right) = 0\\
\Leftrightarrow \left( {\sin x – 2} \right)\left( {3{{\cos }^2}x – 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 2\left( {vn} \right)\\
\cos x = \dfrac{1}{{\sqrt 3 }}\\
\cos x = – \dfrac{1}{{\sqrt 3 }}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \arccos \left( {\dfrac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = – \arccos \left( {\dfrac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = \arccos \left( { – \dfrac{1}{{\sqrt 3 }}} \right) + k2\pi \\
x = – \arccos \left( { – \dfrac{1}{{\sqrt 3 }}} \right) + k2\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}$
$\begin{array}{l}
3)4\sin 2x\cos x – 4\sqrt 3 {\cos ^2}x – 2\sin x + \sqrt 3 = 0\\
\Leftrightarrow 8\sin x{\cos ^2}x – 4\sqrt 3 {\cos ^2}x – 2\sin x + \sqrt 3 = 0\\
\Leftrightarrow 4{\cos ^2}x\left( {2\sin x – \sqrt 3 } \right) – \left( {2\sin x – \sqrt 3 } \right) = 0\\
\Leftrightarrow \left( {2\sin x – \sqrt 3 } \right)\left( {4{{\cos }^2}x – 1} \right) = 0\\
\Leftrightarrow \left( {2\sin x – \sqrt 3 } \right)\left( {2\cos x – 1} \right)\left( {2\cos x + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = \dfrac{{\sqrt 3 }}{2}\\
\cos x = \dfrac{1}{2}\\
\cos x = \dfrac{{ – 1}}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{3} + k2\pi \\
x = \dfrac{{2\pi }}{3} + k2\pi \\
x = \dfrac{\pi }{3} + k2\pi \\
x = – \dfrac{\pi }{3} + k2\pi \\
x = \dfrac{{2\pi }}{3} + k2\pi \\
x = – \dfrac{{2\pi }}{3} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = \dfrac{\pi }{3} + k2\pi \\
x = \dfrac{{2\pi }}{3} + k2\pi \\
x = – \dfrac{\pi }{3} + k2\pi \\
x = \dfrac{{2\pi }}{3} + k2\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}$