Giải pt lượng giác sau a . tan^2 2x . tan^2 3x = 1 b. cot (3x + 2π/3 ). tan (x – π/3 ) = 1 Giúp giùm e vs

Question

Giải pt lượng giác sau
a . tan^2 2x . tan^2 3x = 1
b. cot (3x + 2π/3 ). tan (x – π/3 ) = 1
Giúp giùm e vs

in progress 0
RuslanHeatt 4 years 2020-10-16T14:34:05+00:00 2 Answers 317 views 0

Answers ( )

    0
    2020-10-16T14:36:04+00:00

    \[\begin{array}{l}
    a)\,\,{\tan ^2}2x.{\tan ^2}3x = 1\,\,\,\left( * \right)\\
    DK:\,\,\left\{ \begin{array}{l}
    \cos 2x \ne 0\\
    \cos 3x \ne 0
    \end{array} \right..\\
    \Rightarrow \left( * \right) \Leftrightarrow \frac{{{{\sin }^2}2x}}{{{{\cos }^2}2x}}.\frac{{{{\sin }^2}3x}}{{{{\cos }^2}3x}} = 1\\
    \Leftrightarrow {\left( {\sin 2x.\sin 3x} \right)^2} = {\left( {\cos 2x.\cos 3x} \right)^2}\\
    \Leftrightarrow {\left[ {\frac{1}{2}\left( {\cos x – \cos 5x} \right)} \right]^2} = {\left[ {\frac{1}{2}\left( {\cos 5x + \cos x} \right)} \right]^2}\\
    \Leftrightarrow {\left( {\cos x – \cos 5x} \right)^2} = {\left( {\cos x + \cos 5x} \right)^2}\\
    \Leftrightarrow – 2\cos x.\cos 5x = 2\cos x.\cos 5x\\
    \Leftrightarrow \cos x.\cos 5x = 0\\
    \Leftrightarrow \left[ \begin{array}{l}
    \cos x = 0\\
    \cos 5x = 0
    \end{array} \right..\\
    b)\,\,\,\cot \left( {3x + \frac{{2\pi }}{3}} \right).tan\left( {x – \frac{\pi }{3}} \right) = 1\,\,\,\left( * \right)\\
    DK:\,\,\,\left\{ \begin{array}{l}
    \cos \left( {x – \frac{\pi }{3}} \right) \ne 0\\
    \sin \left( {3x\_\frac{{2\pi }}{3}} \right) \ne 0
    \end{array} \right.\\
    \left( * \right) \Leftrightarrow \frac{{\cos \left( {3x + \frac{{2\pi }}{3}} \right)}}{{\sin \left( {3x\_\frac{{2\pi }}{3}} \right)}}.\frac{{\sin \left( {x – \frac{\pi }{3}} \right)}}{{\cos \left( {x – \frac{\pi }{3}} \right)}} = 1\\
    \Leftrightarrow \cos \left( {3x + \frac{{2\pi }}{3}} \right).\sin \left( {x – \frac{\pi }{3}} \right) = \sin \left( {3x – \frac{{2\pi }}{3}} \right).\cos \left( {x – \frac{\pi }{3}} \right)\\
    \Leftrightarrow \sin \left( {x – \frac{\pi }{3} – 3x – \frac{{2\pi }}{3}} \right) + \sin \left( {x – \frac{\pi }{3} + 3x + \frac{{2\pi }}{3}} \right) = \sin \left( {3x – \frac{{2\pi }}{3} – x + \frac{\pi }{3}} \right) + \sin \left( {3x – \frac{{2\pi }}{3} + x – \frac{\pi }{3}} \right)\\
    \Leftrightarrow \sin \left( { – 2x – \pi } \right) + \sin \left( {4x + \frac{\pi }{3}} \right) = \sin \left( {2x – \frac{\pi }{3}} \right) + \sin \left( {4x – \pi } \right)\\
    \Leftrightarrow \sin \left( {2x + \pi } \right) + \sin \left( {4x + \frac{\pi }{3}} \right) = \sin \left( {2x – \frac{\pi }{3}} \right) – \sin \left( {\pi – 4x} \right)\\
    \Leftrightarrow – \sin 2x + \sin 4x.\cos \frac{\pi }{3} + \cos 4x.\sin \frac{\pi }{3} = \sin 2x.cos\frac{\pi }{3} – \cos 2x.\sin \frac{\pi }{3} – \sin 4x\\
    \Leftrightarrow \frac{1}{2}\sin 4x + \frac{{\sqrt 3 }}{2}\cos 4x – \sin 2x = \frac{1}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x – \sin 4x\\
    \Leftrightarrow \frac{3}{2}\sin 4x + \frac{{\sqrt 3 }}{2}\cos 4x = \frac{3}{2}\sin 2x – \frac{{\sqrt 3 }}{2}\cos 2x\\
    \Leftrightarrow \frac{{\sqrt 3 }}{2}\sin 4x + \frac{1}{2}\cos 4x = \frac{{\sqrt 3 }}{2}\sin 2x – \frac{1}{2}\cos 2x\\
    \Leftrightarrow \sin \left( {4x + \frac{\pi }{6}} \right) = \sin \left( {2x – \frac{\pi }{6}} \right).
    \end{array}\]
    Em giải các phương trình lượng giác cơ bản nhé.

    0
    2020-10-16T14:36:14+00:00

    Để tìm câu trả lời chính xác các em hãy tham khảo giai pt luong giac các nguồn hoc24.vn, lazi.vn, hoidap247.com để thầy cô và các chuyên gia hỗ trợ các em nhé!

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )