Share
Bài $ 7 $. Thu gọn tổng sau: $ A $ $ = $ $ 1 + 3 + $ $3^{2} + $ $3^{3} + $ $ ….. + $ $3^{100}$
Question
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Answers ( )
Ta có: `A = 1 + 3 + 3^2 + … + 3^100`
`3A = 3 + 3^2 + 3^3 + … + 3^101`
`→ 3A – A = 3^101 – 1`
`→ 2A = 3^101 – 1`
`→ A = (3^101 – 1)/2`
$ A=1 +3+3^2 + 3^3 + …..+3^{100}$
$3A = 3 + 3^2 + 3^3 + 3^4 + …..+ 3 ^{101}$
Ta lấy :
$ 3A-A =( 3 + 3^2 + 3^3 + 3^4 + …..+ 3 ^{101})-(1 +3+3^2 + 3^3 + …..+3^{100} )$
$2A = 3 ^{101}$ -1
A = A = $\dfrac{3^{101}-1}{2}$