A beam of light in air enters a glass slab with an index of refraction of 1.40 at an angle of incidence of 30.0°. What is the angle of refra

Question

A beam of light in air enters a glass slab with an index of refraction of 1.40 at an angle of incidence of 30.0°. What is the angle of refraction? (index of refraction of air=1)

in progress 0
Euphemia 4 years 2021-08-05T09:09:31+00:00 1 Answers 85 views 0

Answers ( )

    0
    2021-08-05T09:11:02+00:00

    Answer:

     \boxed{\sf Angle  \: of \:  refraction  \: (r) =  {sin}^{ - 1} ( \frac{1}{2.8} )}

    Given:

    Refractive index of air (  \sf  \mu_{air} )= 1

    Refractive index of glass slab (  \sf  \mu_{glass} ) = 1.40

    Angle of incidence (i) = 30.0°

    To Find:

    Angle of refraction (r)

    Explanation:

    From Snell’s Law:

      \boxed{ \bold{ \sf \mu_{air}sin \ i =  \mu_{glass}sin \: r}}

     \sf \implies 1 \times sin  \: 30 ^ \circ = 1.4sin \:r

     \sf sin \:30^ \circ =  \frac{1}{2}  :

     \sf \implies  \frac{1}{2}  = 1.4 sin \: r

     \sf  \frac{1}{2}  = 1.4 sin \: r   \: is \: equivalent \: to \: 1.4 sin \: r =  \frac{1}{2}  :

     \sf \implies 1.4 sin \: r =  \frac{1}{2}

    Dividing both sides by 1.4:

     \sf \implies \frac{\cancel{1.4} sin \: r}{\cancel{1.4}}  =  \frac{1}{2 \times 1.4}

     \sf \implies sin \: r  =  \frac{1}{2 \times 1.4}

     \sf \implies sin \: r =  \frac{1}{2.8}

     \sf \implies r =  {sin}^{ - 1} ( \frac{1}{2.8} )

     \therefore

     \sf Angle  \: of \:  refraction  \: (r) =  {sin}^{ - 1} ( \frac{1}{2.8} )

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )