In an arithmetic sequence Sn=n^2SN=N^2-2N .USE formula (Tn=Sn-Sn-1) to determine the value of Tn​

Question

In an arithmetic sequence Sn=n^2SN=N^2-2N .USE formula (Tn=Sn-Sn-1) to determine the value of Tn​

in progress 0
Adela 4 years 2021-08-25T09:28:38+00:00 1 Answers 24 views 0

Answers ( )

    0
    2021-08-25T09:30:27+00:00

    Answer:

    T_n =  2n -3

    Step-by-step explanation:

    Given

    S_n = n^2- 2n

    T_n = S_n - S_{n-1

    Required

    Find T_n

    S_n = n^2- 2n

    Calculate S_{n-1

    S_{n-1} = (n-1)^2- 2(n-1)

    S_{n-1} = n^2-2n+1- 2n+2

    S_{n-1} = n^2-2n- 2n+1+2

    S_{n-1} = n^2-4n+3

    T_n = S_n - S_{n-1 becomes

    T_n = n^2 - 2n - (n^2 - 4n +3)

    T_n = n^2 - 2n - n^2 + 4n -3

    T_n = n^2 - n^2- 2n  + 4n -3

    T_n =  2n -3

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )