Sin^4x + cos^4(x+π/4) =1/4

Question

Sin^4x + cos^4(x+π/4) =1/4

in progress 0
RuslanHeatt 4 years 2020-12-03T17:17:08+00:00 3 Answers 414 views 0

Answers ( )

    0
    2020-12-03T17:19:03+00:00

    Giải thích các bước giải:

    [(1-cos2x)/2 ]^2 + [1+cos(2x+pi/2) /2 ]^2 =1/4

    <=>(1-cos2x)^2 +[1-sin2x]^2=1

    <=>1-2cos2x+cos^2 2x +1 -2sin2x+sin^2 2x=1

    <=>1+sin^2 2x+cos^2 2x -2cos2x-2sin2x=0

    <=> 2-2cos2x-2sin2x=0

    <=>2cos2x+2sin2x=2

    <=>2 sin(2x + pi/4)=2

    <=> sin(2x+pi/4)=1

    <=> 2x+pi/4= pi/2 + k2pi

    <=>2x=pi/4+k2pi

    <=>x=pi/8+kpi(kE Z)

    0
    2020-12-03T17:19:08+00:00

    Đáp án:
    $x=\left({k\pi;\dfrac{\pi}4+k\pi}\right)$ $(k\in\mathbb Z)$

    Lời giải:

    $\sin^4x+\cos^4\left({x+\dfrac{\pi}4}\right)=\dfrac14$

    $\Leftrightarrow\sin^4x+\left({\cos x.\dfrac1{\sqrt2}-\sin x.\dfrac1{\sqrt2}}\right)^4=\dfrac14$

    $\Leftrightarrow\sin^4x+\dfrac14(\cos x-\sin x)^4=\dfrac14$

    $\Leftrightarrow\sin^4x+\dfrac14[(\cos x-\sin x)^2]^2=\dfrac14$

    $\Leftrightarrow\sin^4x+\dfrac14(\cos^2x-2\sin x\cos x+\sin^2x)^2=\dfrac14$

    $\Leftrightarrow\sin^4x+\dfrac14(1-2\sin x\cos x)^2=\dfrac14$

    $\Leftrightarrow\sin^4x+\sin^2x\cos^2x-\sin x\cos x=0$

    $\left[\begin{array}{I}\sin x=0\text{ (1)}\\\sin^3x+\sin x\cos^2x-\cos x=0\text{ (2)}\end{array}\right.$

    (1) $\Leftrightarrow x=k\pi$ $(k\in\mathbb Z)$

    (2) $\Leftrightarrow \sin x(\sin^2x+\cos^2x)-\cos x=0$

    $\Leftrightarrow\sin x-\cos x=0$

    $\Leftrightarrow\sin\left({x-\dfrac{\pi}4}\right)=0$

    $\Leftrightarrow x-\dfrac{\pi}4=k\pi$

    $\Leftrightarrow x=\dfrac{\pi}4+k\pi$ $(k\in\mathbb Z)$

    Vậy phương trình có nghiệm:

    $x=\left({k\pi;\dfrac{\pi}4+k\pi}\right)$ $(k\in\mathbb Z)$.

    0
    2020-12-03T17:19:15+00:00

    Để tìm câu trả lời chính xác các em hãy tham khảo sin^4x các nguồn hoc24.vn, lazi.vn, hoidap247.com để thầy cô và các chuyên gia hỗ trợ các em nhé!

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )