Share
The per-unit impedance of a single-phase electric load is 0.3. The base power is 500 kVA, and the base voltage is 13.8 kV. a. Find the per-u
Question
The per-unit impedance of a single-phase electric load is 0.3. The base power is 500 kVA, and the base voltage is 13.8 kV. a. Find the per-unit impedance of the load if 1 MVA and 24 kV are selected as base values. b. Find the ohmic value of the impedance.
in progress
0
Physics
3 years
2021-08-15T20:02:11+00:00
2021-08-15T20:02:11+00:00 1 Answers
15 views
0
Answers ( )
Answer:
114.26
Explanation:
a)Formula for per unit impedance for change of base is
Zpu2= Zpu1×(kV1/kV2)²×(kVA2/kVA1)
Zpu2: New per unit impedance
Zpu1: given per unit impedance
kV1: give base voltage
kV2: New bas votlage
kVA1: given bas power
kVA2: new base power
In the question
Zpu2=??
Zpu1= 0.3
kV2=24kV
kV1= 13.8 kV
kVA2= 1MVA ×1000= 1000 kVA
kVA1=500kVA
Zpu2= 0.3(13.8/24)²×(1000/500)
Zpu2= 0.198
b) to find ohmic impedance we will first calculate base value of impedance(Zbase). So,
Zbase= kV²/MVA
Zbase= 13.8²/(500/1000)
Zbase=380.88
Now that we have base value of impedance, Zbase, we can calculate actual ohmic value of impedance(Zactual) by using the following formula:
Zpu=Zactual/Zbase
0.3= Zactual/380.88
Zactual= 114.26 ohms