Cho $\frac{1}{x}$ + $\frac{1}{y}$ + $\frac{1}{z}$ =0 ( x, y, z $\neq$ 0). Tính $\frac{yz}{x^{2}}$ + $\frac{xz}{y^{2}}$ + $\frac{xy}{z^{2}}$

Question

Cho $\frac{1}{x}$ + $\frac{1}{y}$ + $\frac{1}{z}$ =0 ( x, y, z $\neq$ 0). Tính $\frac{yz}{x^{2}}$ + $\frac{xz}{y^{2}}$ + $\frac{xy}{z^{2}}$

in progress 0
RI SƠ 4 years 2020-10-14T18:27:03+00:00 1 Answers 105 views 0

Answers ( )

    0
    2020-10-14T18:28:11+00:00

    Đáp án:

    $\sum = 3$

    Giải thích các bước giải:

    Ta có:

    $\dfrac{1}{x} +\dfrac{1}{y} + \dfrac 1z = 0$

    $\to \dfrac{xy + yz + zx}{xyz} = 0$

    $\to xy + yz + zx = 0$

    $\to \left(\dfrac{1}{x^2} + \dfrac{1}{y^2} + \dfrac{1}{z^2}\right)(xy + yz + zx) = 0$

    $\to \dfrac{xy + yz + zx}{x^2} + \dfrac{xy + yz + zx}{y^2} + \dfrac{xy + yz + zx}{z^2} = 0$

    $\to \dfrac yx + \dfrac{yz}{x^2} + \dfrac zx + \dfrac xy + \dfrac zy + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} + \dfrac yz +\dfrac xz = 0$ $(*)$

    Mặt khác:

    $\dfrac{1}{x} +\dfrac{1}{y} + \dfrac 1z = 0$

    $\to \begin{cases}1 + \dfrac xy + \dfrac xz = 0\\\dfrac yx + 1 + \dfrac yz = 0\\\dfrac zx + \dfrac zy + 1 = 0\end{cases}$

    $\to \dfrac xy + \dfrac xz +\dfrac yx + \dfrac yz +\dfrac zx + \dfrac zy = -3$

    Thay vào $(*)$ ta được:

    $\dfrac{yz}{x^2} + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} – 3 = 0$

    $\to \dfrac{yz}{x^2} + \dfrac{zx}{y^2} + \dfrac{xy}{z^2} = 3$

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )