Giải các phương trình sau Question Giải các phương trình sau in progress 0 Môn Toán Calantha 4 years 2020-12-01T03:01:57+00:00 2020-12-01T03:01:57+00:00 1 Answers 52 views 0
Answers ( )
Đáp án:
${6)x = k\dfrac{\pi }{2};x = \dfrac{\pi }{3} + k\pi ;x = – \dfrac{\pi }{3} + k\pi \left( {k \in Z} \right)}$
$7)x = k\pi \left( {k \in Z} \right)$
Giải thích các bước giải:
$\begin{array}{l}
6){\sin ^2}x = {\sin ^2}2x + {\sin ^2}3x\\
\Leftrightarrow {\sin ^2}2x + {\sin ^2}3x – {\sin ^2}x = 0\\
\Leftrightarrow {\sin ^2}2x + \left( {\sin 3x – \sin x} \right)\left( {\sin 3x + \sin x} \right) = 0\\
\Leftrightarrow {\sin ^2}2x + 2\cos 2x\sin x.2\sin 2x\cos x = 0\\
\Leftrightarrow {\sin ^2}2x + 2\cos 2x.{\sin ^2}2x = 0\\
\Leftrightarrow {\sin ^2}2x\left( {1 + 2\cos 2x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
{\sin ^2}2x = 0\\
1 + 2\cos 2x = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
\sin 2x = 0\\
\cos 2x = \dfrac{{ – 1}}{2}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
2x = k\pi \\
2x = \dfrac{{2\pi }}{3} + k2\pi \\
2x = – \dfrac{{2\pi }}{3} + k2\pi
\end{array} \right.\left( {k \in Z} \right)\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\dfrac{\pi }{2}\\
x = \dfrac{\pi }{3} + k\pi \\
x = – \dfrac{\pi }{3} + k\pi
\end{array} \right.\left( {k \in Z} \right)
\end{array}$
$\begin{array}{l}
7)4\sin 2x – 3\cos 2x = 3\left( {4\sin x – 1} \right)\\
\Leftrightarrow 4\sin 2x – 3\cos 2x – 12\sin x + 3 = 0\\
\Leftrightarrow 4\sin 2x – 12\sin x – 3\left( {\cos 2x – 1} \right) = 0\\
\Leftrightarrow 8\sin x\cos x – 12\sin x – 3\left( { – 2{{\sin }^2}x} \right) = 0\\
\Leftrightarrow 8\sin x\cos x – 12\sin x + 6{\sin ^2}x = 0\\
\Leftrightarrow 2\sin x\left( {4\cos x – 6 + 3\sin x} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
\sin x = 0\\
3\sin x + 4\cos x = 6
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\pi \\
\dfrac{3}{5}\sin x + \dfrac{4}{5}\cos x = \dfrac{6}{5}
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = k\pi \left( {k \in Z} \right)\\
\cos \left( {x – \alpha } \right) = \dfrac{6}{5}\left( {\alpha :\cos \alpha = \dfrac{4}{5};\sin \alpha = \dfrac{3}{5}} \right)\left( {vn} \right)
\end{array} \right.\\
\Leftrightarrow x = k\pi \left( {k \in Z} \right)
\end{array}$