Đề:Tính tổng A=2+2^2+2^3+…+2^100 Question Đề:Tính tổng A=2+2^2+2^3+…+2^100 in progress 0 Môn Toán Ladonna 4 years 2020-10-13T15:00:12+00:00 2020-10-13T15:00:12+00:00 2 Answers 136 views 0
Answers ( )
Đáp án:
0^101
Giải thích các bước giải:
Ta có :
A=2 + 2^2 + 2^3+…..+ 2^100
2A=2^2 + 263 + 2^4 + … + 2^ 101
2A-A =(2^2+2^3+2^4+…+2^100)-(2^2+^3+…+2^100)
A=2^101-2
A=0^101
$A=2+2^{2}+2^{3}+…+2^{100}$
$2A=2×(2+2^{2}+2^{3}+…+2^{100}$
$2A=2×2+2×2^{2}+2×2^{3}+…+2×2^{100}$
$2A=2^{2}+2^{3}+2^{4}+…+2^{101}$
$A=2A-A=(2^{2}+2^{3}+2^{4}+…+2^{101})$
$-(2+2^{2}+2^{3}+…+2^{100})$
$=>A=2^{101}-2$