a, sin4x-cos4x=- √2 b,sin3x+cos3x= √ Question a, sin4x-cos4x=- √2 b,sin3x+cos3x= √ in progress 0 Môn Toán Huy Gia 5 years 2020-11-10T15:42:04+00:00 2020-11-10T15:42:04+00:00 1 Answers 66 views 0
Answers ( )
Giải thích các bước giải:
Ta có:
\(\begin{array}{l}
a,\\
\sin 4x – \cos 4x = – \sqrt 2 \\
\Leftrightarrow \dfrac{1}{{\sqrt 2 }}.\sin 4x – \dfrac{1}{{\sqrt 2 }}.\cos 4x = – 1\\
\Leftrightarrow \sin 4x.\cos \dfrac{\pi }{4} – \cos 4x.\sin \dfrac{\pi }{4} = – 1\\
\Leftrightarrow \sin \left( {4x – \dfrac{\pi }{4}} \right) = – 1\\
\Leftrightarrow 4x – \dfrac{\pi }{4} = – \dfrac{\pi }{2} + k2\pi \\
\Leftrightarrow 4x = – \dfrac{\pi }{4} + k2\pi \\
\Leftrightarrow x = – \dfrac{\pi }{{16}} + \dfrac{{k\pi }}{2}\,\,\,\,\,\,\,\,\,\left( {k \in Z} \right)\\
b,\\
\sin 3x + \cos 3x = \sqrt 2 \\
\Leftrightarrow \dfrac{1}{{\sqrt 2 }}.\sin 3x + \dfrac{1}{{\sqrt 2 }}.\cos 3x = 1\\
\Leftrightarrow \sin 3x.\cos \dfrac{\pi }{4} + \cos 3x.\sin \dfrac{\pi }{4} = 1\\
\Leftrightarrow \sin \left( {3x + \dfrac{\pi }{4}} \right) = 1\\
\Leftrightarrow 3x + \dfrac{\pi }{4} = \dfrac{\pi }{2} + k2\pi \\
\Leftrightarrow 3x = \dfrac{\pi }{4} + k2\pi \\
\Leftrightarrow x = \dfrac{\pi }{{12}} + \dfrac{{k2\pi }}{3}\,\,\,\,\,\,\left( {k \in Z} \right)
\end{array}\)