Đáp án: Giải thích các bước giải : c.1 $( \frac{1}{2} – x )^{2}$ = ($\frac{1}{2}$ – x)($\frac{1}{2}$ -x) = $\frac{1}{2}$ ($\frac{1}{2}$ – x ) – x ( $\frac{1}{2}$ – x ) = $\frac{1}{4}$ – $\frac{1}{2}$x – $\frac{1}{2}$x + $x^{2}$ = ($\frac{1}{4}$ -x )+ $x^{2}$ c.2) $(2x-1)^{2}$ = (2x-1)(2x-1) = 2x(2x-1)-(2x-1) = 4$x^{2}$ – 2x – 2x + 1 = ( 4$x^{2}$ – 4x )+ 1 d.1)$(2x-3y)^{2}$ = (2x-3y)(2x-3y) = 2x(2x-3y) – 3y(2x-3y) = 4$x^{2}$ – 6xy – 6xy + 9$y^{2}$ =( 4$x^{2}$ – 12xy )+ 9$y^{2}$ d.2)$(0,01-xy)^{2}$ = (0,01 – xy) ( 0,01 – xy ) = 0,01(0,01-xy)-xy(0,01-xy) = 0,0001 – 0,01xy – 0,01xy + $x^{2}$ $y^{2}$ =( 0,0001 – 0,02xy )+ $x^{2}$ $y^{2}$ g) (x+y+z).(x-y-z) = x(x-y-z) + y(x-y-z) + z(x-y-z) = $x^{2}$ – xy – xz + xy – $y^{2}$ – yz + xz – yz – $z^{2}$ = $x^{2}$ – $y^{2}$ – $z^{2}$ h) (x-y+z) ( x+y+z ) = x (x-y+z) + y(x-y+z) + z(x-y+z) = $x^{2}$ – xy + xz + xy – $y^{2}$ + yz + xz – yz + $z^{2}$ = $x^{2}$ – $y^{2}$ + $z^{2}$ + 2xz Log in to Reply
Đáp án:
Giải thích các bước giải :
c.1 $( \frac{1}{2} – x )^{2}$
= ($\frac{1}{2}$ – x)($\frac{1}{2}$ -x)
= $\frac{1}{2}$ ($\frac{1}{2}$ – x ) – x ( $\frac{1}{2}$ – x )
= $\frac{1}{4}$ – $\frac{1}{2}$x – $\frac{1}{2}$x + $x^{2}$
= ($\frac{1}{4}$ -x )+ $x^{2}$
c.2) $(2x-1)^{2}$
= (2x-1)(2x-1)
= 2x(2x-1)-(2x-1)
= 4$x^{2}$ – 2x – 2x + 1
= ( 4$x^{2}$ – 4x )+ 1
d.1)$(2x-3y)^{2}$
= (2x-3y)(2x-3y)
= 2x(2x-3y) – 3y(2x-3y)
= 4$x^{2}$ – 6xy – 6xy + 9$y^{2}$
=( 4$x^{2}$ – 12xy )+ 9$y^{2}$
d.2)$(0,01-xy)^{2}$
= (0,01 – xy) ( 0,01 – xy )
= 0,01(0,01-xy)-xy(0,01-xy)
= 0,0001 – 0,01xy – 0,01xy + $x^{2}$ $y^{2}$
=( 0,0001 – 0,02xy )+ $x^{2}$ $y^{2}$
g) (x+y+z).(x-y-z)
= x(x-y-z) + y(x-y-z) + z(x-y-z)
= $x^{2}$ – xy – xz + xy – $y^{2}$ – yz + xz – yz – $z^{2}$
= $x^{2}$ – $y^{2}$ – $z^{2}$
h) (x-y+z) ( x+y+z )
= x (x-y+z) + y(x-y+z) + z(x-y+z)
= $x^{2}$ – xy + xz + xy – $y^{2}$ + yz + xz – yz + $z^{2}$
= $x^{2}$ – $y^{2}$ + $z^{2}$ + 2xz
=))