Share
The rotating loop in an AC generator is a square 10.0 cm on each side. It is rotated at 60.0 Hz in a uniform field of 0.800 TO. Calculate (a
Question
The rotating loop in an AC generator is a square 10.0 cm on each side. It is rotated at 60.0 Hz in a uniform field of 0.800 TO. Calculate (a) the flux through the loop as a function of time, (b) the emf induced in the loop, (c) the current induced in the loop for a loop resistance of 1.00 V, (d) the power delivered to the loop, and (e) the torque that must be exerted to rotate the loop.
in progress
0
Physics
4 years
2021-08-27T07:46:56+00:00
2021-08-27T07:46:56+00:00 1 Answers
57 views
0
Answers ( )
Answer:
Explanation:
Given a square side loop of length 10cm
L=10cm=0.1m
Then, Area=L²
Area=0.1²
Area=0.01m²
Given that, frequency=60Hz
And magnetic field B=0.8T
a. Flux Φ
Flux is given as
Φ=BA Sin(wt)
w=2πf
Φ=BA Sin(2πft)
Φ=0.8×0.01 Sin(2×π×60t)
Φ=0.008Sin(120πt) Weber
b. EMF in loop
Emf is given as
EMF= -N dΦ/dt
Where N is number of turns
Φ=0.008Sin(120πt)
dΦ/dt= 0.008×120Cos(120πt)
dΦ/dt= 0.96Cos(120πt)
Emf=-NdΦ/dt
Emf=-0.96NCos(120πt). Volts
c. Current induced for a resistance of 1ohms
From ohms law, V=iR
Therefore, Emf=iR
i=EMF/R
i=-0.96NCos(120πt) / 1
i=-0.96NCos(120πt) Ampere
d. Power delivered to the loop
Power is given as
P=IV
P=-0.96NCos(120πt)•-0.96NCos(120πt)
P=0.92N²Cos²(120πt) Watt
e. Torque
Torque is given as
τ=iL²B
τ=-0.96NCos(120πt)•0.1²×0.8
τ=-0.00768NCos(120πt) Nm