Suppose you have two point charges of opposite sign. As you move them farther and farther apart, the potential energy of this system relative to infinity:_____________.
(a) stays the same.
(b) Increases.
(c) Decreases.
(d) The answer would depend on the path of motion
Answer:
(b) Increases
Explanation:
The potential energy between two point charges is given as;
[tex]U = F*r = \frac{kq_1q_2}{r}[/tex]
Where;
k is the coulomb’s constant
q₁ ans q₂ are the two point charges
r is the distance between the two point charges
Since the two charges have opposite sign;
let q₁ be negative and q₂ be positive
Substitute in these charges we will have
[tex]U = \frac{k(-q_1)(q_2)}{r} \\\\U = – \frac{kq_1q_2}{r}[/tex]
The negative sign in the above equation shows that as the distance between the two charges increases, the potential energy increases as well.
Therefore, as you move the point charges farther and farther apart, the potential energy of this system relative to infinity Increases.