Question

Simplify the following expression.

\displaystyle{\frac{4x+14}{2}\div\frac{4x+14}{x-6}}

Answers

  1. Answer:

    \displaystyle \frac{4x + 14}{2} \div \frac{4x + 14}{x - 6} = \frac{x - 6}{2}

    General Formulas and Concepts:

    Pre-Algebra

    Order of Operations: BPEMDAS

    1. Brackets
    2. Parenthesis
    3. Exponents
    4. Multiplication
    5. Division
    6. Addition
    7. Subtraction
    • Left to Right

    Dividing Fractions – KCF (Keep Change Flip)

    • Keep the 1st fraction the same
    • Change the sign from division to multiplication
    • Flip the 2nd fraction (reciprocate)

    Algebra I

    • Terms/Coefficients
    • Domains

    Step-by-step explanation:

    Step 1: Define

    \displaystyle \frac{4x + 14}{2} \div \frac{4x + 14}{x - 6}

    Step 2: Simplify

    1. Divide [KCF]:                    \displaystyle \frac{4x + 14}{2} \cdot \frac{x - 6}{4x + 14}
    2. Multiply:                           \displaystyle \frac{(4x + 14)(x - 6)}{2(4x + 14)}
    3. Divide:                             \displaystyle \frac{(x - 6)}{2}

    Extra:

    If we were to graph this, we would need to watch out for domain restrictions or changes because we are combining 2 domains together when 1 of them has a restriction.

Leave a Comment