Question

Rectangle ABCDABCDA, B, C, D is graphed in the coordinate plane. The following are the vertices of the rectangle: A(-1, -6),A(−1,−6),A, left parenthesis, minus, 1, comma, minus, 6, right parenthesis, comma B(-1,7)B(−1,7)B, left parenthesis, minus, 1, comma, 7, right parenthesis, C(1, 7)C(1,7)C, left parenthesis, 1, comma, 7, right parenthesis, and D(1, -6)D(1,−6)D, left parenthesis, 1, comma, minus, 6, right parenthesis.
Given these coordinates, what is the length of side ABABA, B of this rectangle?

1. The length of side AB of this rectangle is 13 units

### How to determine the length of side AB of this rectangle?

From the question, the coordinates of the rectangle are
A (-1, -6), B (-1,7), C (1, 7) and D(1,−6).
The length of side AB of this rectangle is calculated using
AB = √(x2 – x1)^2 + (y2 – y1)^2
Where
A (x1, y1) = (-1, -6)
B (x2, y2) = (-1,7)
So, we have:
AB = √(-1 + 1)^2 + (-6 – 7)^2
Evaluate
AB = √169
Evaluate the exponent
AB = 13
Hence, the length of side AB of this rectangle is 13 units