Sign Up

Have an account? Sign In Now

Sign In

Forgot Password?

Don't have account, Sign Up Here

Forgot Password

Lost your password? Please enter your email address. You will receive a link and will create a new password via email.

Have an account? Sign In Now

You must login to ask question.

Forgot Password?

Need An Account, Sign Up Here
Sign InSign Up

DocumenTV

DocumenTV

DocumenTV Navigation

  • Home
  • Movie
  • Music Entertainment
  • Vietnamese
Search
Ask A Question

Mobile menu

Close
Ask a Question
  • Home
  • Movie
  • Music Entertainment
  • Vietnamese
Home/Questions/Q 7240
Next
In Process
Helga
Helga

Helga

  • 822 Questions
  • 2k Answers
  • 0 Best Answers
  • 17 Points
View Profile
  • 0
Helga
Asked: Tháng Mười 26, 20202020-10-26T20:29:46+00:00 2020-10-26T20:29:46+00:00In: Môn Toán

y = cos(x) + cos(x-pi /3) Mn tim giúp em max min mà giải thích luôn ạ

  • 0

y = cos(x) + cos(x-pi /3)
Mn tim giúp em max min mà giải thích luôn ạ

  • 1 1 Answer
  • 30 Views
  • 0 Followers
  • 0
Answer
Share
  • Facebook

    Related Questions

    • Useful news and important articles
    • APROTININ FROM BOVINE LUNG CELL CULTURE купить онлайн
    • Đứng tính mỗi AC mà phải tính cả CE nữa nhé Cho đường tròn tâm A, bán kính AB. Dây EF ...

    1 Answer

    • Oldest
    • Voted
    • Recent
    1. RI SƠ

      RI SƠ

      • 773 Questions
      • 2k Answers
      • 1 Best Answer
      • 28 Points
      View Profile
      sori
      2020-10-26T20:31:21+00:00Added an answer on Tháng Mười 26, 2020 at 8:31 chiều

      Đáp án: $MinY=-\sqrt{3}, MaxY=\sqrt{3}$

      Giải thích các bước giải:

      Ta có:

      $y=\cos(x)+\cos(x-\dfrac{\pi}{3})$

      $\to y=\cos x+\cos x\cdot\cos(\dfrac{\pi}{3})+\sin x\cdot \sin(\dfrac{\pi}{3})$

      $\to y=\cos x+\dfrac12\cos x+\dfrac{\sqrt{3}}{2}\sin(x)$

      $\to y=\dfrac32\cos(x)+\dfrac{\sqrt{3}}{2}\sin x$

      $\to y^2=(\dfrac32\cos(x)+\dfrac{\sqrt{3}}{2}\sin x)^2$

      $\to y^2\le ((\dfrac32)^2+(\dfrac{\sqrt{3}}{2})^2)(\cos^2x+\sin^2x)$

      4\to y^2\le 3$

      $\to -\sqrt{3}\le y\le \sqrt{3}$

      $\to MinY=-\sqrt{3}, MaxY=\sqrt{3}$

      Ta có $Max Y$ xảy ra khi $\dfrac{\cos x}{\dfrac32}=\dfrac{\sin x}{\dfrac{\sqrt{3}}{2}}$

      $\to \dfrac{\sin x}{\cos x}=\dfrac{1}{\sqrt{3}}$

      $\to\tan x=\dfrac{1}{\sqrt{3}}$

              $Max Y$ xảy ra khi $\dfrac{\cos x}{\dfrac32}=-\dfrac{\sin x}{\dfrac{\sqrt{3}}{2}}$

      $\to \dfrac{\sin x}{\cos x}=-\dfrac{1}{\sqrt{3}}$

      $\to\tan x=-\dfrac{1}{\sqrt{3}}$

      • 0
      • Reply
      • Share
        Share
        • Share on Facebook
    Leave an answer

    Leave an answer
    Hủy

    Sidebar

    Footer

    Mọi thắc mắc liên quan nội dung, câu hỏi, câu trả lời hãy liên hệ chúng tôi qua email: ad.documen.tv@gmail.com . Xin cảm ơn.
    Contact me: ad.documen.tv@gmail.com . Thank you!