What is the equation of the line that represents the horizontal asymptote of the function f(x)=25,000(1+0.025)^(x)?

Question

What is the equation of the line that represents the horizontal asymptote of the function f(x)=25,000(1+0.025)^(x)?

in progress 0
Edana Edana 3 months 2021-08-18T06:22:03+00:00 1 Answers 6 views 0

Answers ( )

    0
    2021-08-18T06:23:10+00:00

    Answer:

    The answer is below

    Step-by-step explanation:

    The horizontal asymptote of a function f(x) is gotten by finding the limit as x ⇒ ∞ or x ⇒ -∞. If the limit gives you a finite value, then your asymptote is at that point.

    \lim_{x \to \infty} f(x)=A\\\\or\\\\ \lim_{x \to -\infty} f(x)=A\\\\where\ A\ is\ a\ finite\ value.\\\\Given\ that \ f(x) =25000(1+0.025)^x\\\\ \lim_{x \to \infty} f(x)= \lim_{x \to \infty} [25000(1+0.025)^x]= \lim_{x \to \infty} [25000(1.025)^x]\\=25000 \lim_{x \to \infty} [(1.025)^x]=25000(\infty)=\infty\\\\ \lim_{x \to -\infty} f(x)= \lim_{x \to -\infty} [25000(1+0.025)^x]= \lim_{x \to -\infty} [25000(1.025)^x]\\=25000 \lim_{x \to -\infty} [(1.025)^x]=25000(0)=0\\\\

    Since\  \lim_{x \to -\infty} f(x)=0\ is\ a\ finite\ value,hence:\\\\Hence\ the\ horizontal\ asymtotes\ is\ at\ y=0

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )