Tìm tập xác định của hàm số:
$y=f(x)$= $\left \{ {{\dfrac{1}x}khix\geq1 \atop {\sqrt{x+1}khix<1}} \right.$
Tìm tập xác định của hàm số: $y=f(x)$= $\left \{ {{\dfrac{1}x}khix\geq1 \atop {\sqrt{x+1}khix<1}} \right.$
Share
Lost your password? Please enter your email address. You will receive a link and will create a new password via email.
Nho
Xem hình…
Helga
Đáp án:
Khi $x≥1$: $D=[1;+∞)$
Khi $x<1$: $D=[-1;1)$
Giải thích các bước giải:
Khi $x≥1$, ta có:
$f(x)=\dfrac{1}{x}$
Điều kiện xác định: $x\neq0 $
Vì $x≥1$ nên suy ra:
Tập xác định của hàm số là: $D=[1;+∞)$
Khi $x<1$, ta có:
$f(x)=\sqrt[]{x+1}$
Điều kiện xác định:
$x+1≥0 ↔ x≥-1$
Vì $x<1$ nên $-1≤x<1$
Vậy tập xác định là: $D=[-1;1)$