solve each of the following equations:  \frac{4 }{9} - \frac{x {}^{2} }{25} = 0

Question

solve each of the following equations:
 \frac{4 }{9}  -  \frac{x {}^{2} }{25}  = 0

in progress 0
Khải Quang 5 months 2021-09-05T01:29:34+00:00 1 Answers 7 views 0

Answers ( )

    0
    2021-09-05T01:31:12+00:00

    Answer:

     x  =  3\frac{1}{3},  \:  \:  x =  -  3\frac{1}{3}

    Step-by-step explanation:

    \frac{4 }{9} - \frac{x {}^{2} }{25} = 0 \\  \\  =  { \bigg( \frac{2}{3} \bigg) }^{2}  - { \bigg( \frac{x}{5} \bigg) }^{2}   = 0\\  \\ { \bigg( \frac{2}{3} -\frac{x}{5}  \bigg) }{ \bigg( \frac{2}{3}  + \frac{x}{5}  \bigg) } = 0 \\  \\ { \bigg( \frac{2}{3} -\frac{x}{5}  \bigg) } = 0, \:  \: { \bigg( \frac{2}{3}  + \frac{x}{5}  \bigg) } = 0 \\  \\  \frac{x}{5}  =  \frac{2}{3}, \:  \:  \frac{x}{5}  =  -  \frac{2}{3}  \\  \\ x  =  \frac{10}{3},  \:  \:  x =  -  \frac{10}{3}  \\  \\  x  =  3\frac{1}{3}, \:  \:  x =  -  3\frac{1}{3}  \\  \\

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )