Hưng Khoa 922 Questions 2k Answers 0 Best Answers 19 Points View Profile0 Hưng Khoa Asked: Tháng Mười Một 26, 20202020-11-26T01:11:36+00:00 2020-11-26T01:11:36+00:00In: Môn ToánS=1/1×3+1/2×4+1/3×5+…+1/7×9+1/8×100S=1/1×3+1/2×4+1/3×5+…+1/7×9+1/8×10 ShareFacebookRelated Questions Bài 4 (0,75 điểm) Một chi tiết máy gồm một phần hình trụ , phần còn lại dạng hình nón. Các kích ... - đoạn trích "con ng của Bác... tao nhã bt bao" - đoạn trích "giản dị trong đời sống...anh hùng cách ... Câu 1: Xác định và gọi tên kiểu nhân hóa trong câu ca dao sau: ...2 AnswersOldestVotedRecentCherry 962 Questions 2k Answers 0 Best Answers 12 Points View Profile Cherry 2020-11-26T01:12:47+00:00Added an answer on Tháng Mười Một 26, 2020 at 1:12 sáng `S=1/1×3+1/2×4+1/3×5+…+1/7×9+1/8×10``S=1/2×(2/1×3+2/2×4+2/3×5+…+2/7×9+2/8×10)``S=1/2×(1/1-1/3+1/2-1/4+1/3-1/5…+1/7-1/9+1/9-1/10)``S=1/2×(1-1/10)``S=1/2×9/10``S=9/20` 0Reply Share ShareShare on FacebookLadonna 970 Questions 2k Answers 0 Best Answers 14 Points View Profile Ladonna 2020-11-26T01:12:51+00:00Added an answer on Tháng Mười Một 26, 2020 at 1:12 sáng Đáp án: Giải thích các bước giải: $S=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+…+\dfrac{1}{7.9}+\dfrac{1}{8.10}$$ $$⇒2S=\dfrac{2}{1.3}+\dfrac{2}{2.4}+…+\dfrac{2}{7.9}+\dfrac{2}{8.10}$$ $$=(\dfrac{2}{1.3}+\dfrac{2}{3.5}+…+\dfrac{2}{7.9})+(\dfrac{2}{2.4}+\dfrac{2}{4.6}+…+\dfrac{2}{8.10})$$ $$=(1-\dfrac{1}{9})+(\dfrac{1}{2}-\dfrac{1}{10})$$ $$=\dfrac{8}{9}+\dfrac{2}{5}$$ $$=\dfrac{40}{45}+\dfrac{18}{45}$$ $$=\dfrac{58}{45}$$ $$⇒S=\dfrac{29}{45}$0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Cherry
`S=1/1×3+1/2×4+1/3×5+…+1/7×9+1/8×10`
`S=1/2×(2/1×3+2/2×4+2/3×5+…+2/7×9+2/8×10)`
`S=1/2×(1/1-1/3+1/2-1/4+1/3-1/5…+1/7-1/9+1/9-1/10)`
`S=1/2×(1-1/10)`
`S=1/2×9/10`
`S=9/20`
Ladonna
Đáp án:
Giải thích các bước giải:
$S=\dfrac{1}{1.3}+\dfrac{1}{2.4}+\dfrac{1}{3.5}+…+\dfrac{1}{7.9}+\dfrac{1}{8.10}$
$ $
$⇒2S=\dfrac{2}{1.3}+\dfrac{2}{2.4}+…+\dfrac{2}{7.9}+\dfrac{2}{8.10}$
$ $
$=(\dfrac{2}{1.3}+\dfrac{2}{3.5}+…+\dfrac{2}{7.9})+(\dfrac{2}{2.4}+\dfrac{2}{4.6}+…+\dfrac{2}{8.10})$
$ $
$=(1-\dfrac{1}{9})+(\dfrac{1}{2}-\dfrac{1}{10})$
$ $
$=\dfrac{8}{9}+\dfrac{2}{5}$
$ $
$=\dfrac{40}{45}+\dfrac{18}{45}$
$ $
$=\dfrac{58}{45}$
$ $
$⇒S=\dfrac{29}{45}$