## Polynomial: 2×3 – x2 – 3x + 5; Divisor: x + 3

Question

Polynomial: 2×3 – x2 – 3x + 5; Divisor: x + 3

in progress 0
7 months 2021-07-25T03:51:31+00:00 2 Answers 7 views 0

2x² + 5x – 18 Remainder 59

Step-by-step explanation:

2x³ – x² – 3x + 5 ÷ x + 3

2x² + 5x – 18

x + 3 √ 2x³ – x² – 3x + 5

– 2x³ – 6x²

0  +  5x² – 3x + 5

– 5x² + 15x

0 – 18x + 5

– –18x –54

0 + 59

2x³ – x² – 3x + 5 ÷ x + 3 = 2x² + 5x – 18 Remainder 59

x= 5/2= 2.500

x= -1 – Divisor: -3/2 = -1-(i)Divisor:3/2= 0.5000-0.8660(i)

x= -1+Divisor: -3/2= -1+(i)Divisor:3/2=-0.5000+0.8660(i)

Step-by-step explanation:

STEP

1

:

Equation at the end of step 1

(((2 • (x3)) –  3×2) –  3x) –  5  = 0

STEP

2

:

Equation at the end of step

2

:

((2×3 –  3×2) –  3x) –  5  = 0

STEP

3

:

Checking for a perfect cube

3.1    2×3-3×2-3x-5  is not a perfect cube

Trying to factor by pulling out : 3.2      Factoring:  2×3-3×2-3x-5

Thoughtfully split the expression at hand into groups, each group having two terms :

Group 1:  -3x-5

Group 2:  -3×2+2×3

Pull out from each group separately :

Group 1:   (3x+5) • (-1)

Group 2:   (2x-3) • (x2)

Bad news !! Factoring by pulling out fails :