Acacia 838 Questions 2k Answers 0 Best Answers 17 Points View Profile0 Acacia Asked: Tháng Mười 26, 20202020-10-26T10:54:49+00:00 2020-10-26T10:54:49+00:00In: Môn ToánMọi người ơi giúp mình với!!!0Mọi người ơi giúp mình với!!! ShareFacebookRelated Questions Một hình thang có đáy lớn là 52cm ; đáy bé kém đáy lớn 16cm ; chiều cao kém đáy ... Useful news and important articles APROTININ FROM BOVINE LUNG CELL CULTURE купить онлайн2 AnswersOldestVotedRecentTryphena 847 Questions 2k Answers 0 Best Answers 19 Points View Profile Tryphena 2020-10-26T10:56:20+00:00Added an answer on Tháng Mười 26, 2020 at 10:56 sáng `***/`Đáp án:`∠ABC=150^0` `∠CBx=30^0`Giải thích các bước giải:`***`Xét tứ giác `ABCD` có:`∠A+B+∠C+∠D=360^0``=>∠ABC=360^0-∠A-∠C-∠D``∠ABC=360^0-120^0-30^0-60^0``∠ABC=150^0` `***`Ta có: `∠ABC+∠CBx=180^0` (kề bù)`=>∠CBx=180^0-∠ABC``∠CBx=180^0-150^0``∠CBx=30^0`0Reply Share ShareShare on FacebookKing 847 Questions 2k Answers 0 Best Answers 23 Points View Profile King 2020-10-26T10:56:39+00:00Added an answer on Tháng Mười 26, 2020 at 10:56 sáng Đáp án: -Ta có tổng 4 góc tứ giác bằng $360^o$$⇒\widehat{DAB} + \widehat{ABC} + \widehat{ADC} + \widehat{BCD} = 360^o$$⇒120^o + \widehat{ABC} + 60^o + 30^o = 360^o$$⇒\widehat{ABC} = 360^o – 120^o – 60^o – 30^o$$⇒\widehat{ABC} = 150^o$$⇒\widehat{ABC} + \widehat{CBx} = 180^o$ $\text{ (hai góc kề bù) }$$⇒150^o +\widehat{CBx} = 180^o$$⇒\widehat{CBx} = 180^o – 150^o$$⇒\widehat{CBx} = 30^o$ 0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Tryphena
`***/`
Đáp án:
`∠ABC=150^0`
`∠CBx=30^0`
Giải thích các bước giải:
`***`
Xét tứ giác `ABCD` có:
`∠A+B+∠C+∠D=360^0`
`=>∠ABC=360^0-∠A-∠C-∠D`
`∠ABC=360^0-120^0-30^0-60^0`
`∠ABC=150^0`
`***`
Ta có: `∠ABC+∠CBx=180^0` (kề bù)
`=>∠CBx=180^0-∠ABC`
`∠CBx=180^0-150^0`
`∠CBx=30^0`
King
Đáp án:
-Ta có tổng 4 góc tứ giác bằng $360^o$
$⇒\widehat{DAB} + \widehat{ABC} + \widehat{ADC} + \widehat{BCD} = 360^o$
$⇒120^o + \widehat{ABC} + 60^o + 30^o = 360^o$
$⇒\widehat{ABC} = 360^o – 120^o – 60^o – 30^o$
$⇒\widehat{ABC} = 150^o$
$⇒\widehat{ABC} + \widehat{CBx} = 180^o$ $\text{ (hai góc kề bù) }$
$⇒150^o +\widehat{CBx} = 180^o$
$⇒\widehat{CBx} = 180^o – 150^o$
$⇒\widehat{CBx} = 30^o$