Acacia 930 Questions 2k Answers 0 Best Answers 16 Points View Profile0 Acacia Asked: Tháng Mười Một 26, 20202020-11-26T16:14:28+00:00 2020-11-26T16:14:28+00:00In: Môn ToánMn ơi giúp em với ????????????????????????????????????0Mn ơi giúp em với ???????????????????????????????????? ShareFacebookRelated Questions Где быстро занять денег? Một hình thang có đáy lớn là 52cm ; đáy bé kém đáy lớn 16cm ; chiều cao kém đáy ... Useful news and important articles1 AnswerOldestVotedRecentJezebel 954 Questions 2k Answers 0 Best Answers 17 Points View Profile Jezebel 2020-11-26T16:15:56+00:00Added an answer on Tháng Mười Một 26, 2020 at 4:15 chiều Đáp án:a. \(\dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\)Giải thích các bước giải:\(\begin{array}{l}a.Q = \dfrac{{3x + \sqrt {3x} – 3 – \left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right) – \left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\ = \dfrac{{3x + \sqrt {3x} – 3 – x + 1 – x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\ = \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\b.Thay:x = 4 + 2\sqrt 3 \\ = 3 + 2\sqrt 3 .1 + 1 = {\left( {\sqrt 3 + 1} \right)^2}\\ \to Q = \dfrac{{4 + 2\sqrt 3 + \sqrt {3.{{\left( {\sqrt 3 + 1} \right)}^2}} + 2}}{{\left( {\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + 2} \right)\left( {\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} – 1} \right)}}\\ = \dfrac{{4 + 2\sqrt 3 + \left( {\sqrt 3 + 1} \right)\sqrt 3 + 2}}{{\left( {\sqrt 3 + 1 + 2} \right)\left( {\sqrt 3 + 1 – 1} \right)}}\\ = \dfrac{{6 + 2\sqrt 3 + 3 + \sqrt 3 }}{{\left( {\sqrt 3 + 3} \right)\sqrt 3 }}\\ = \dfrac{{9 + 3\sqrt 3 }}{{3 + 3\sqrt 3 }} = \dfrac{{3 + \sqrt 3 }}{{1 + \sqrt 3 }}\\ = \dfrac{{\sqrt 3 \left( {1 + \sqrt 3 } \right)}}{{1 + \sqrt 3 }} = \sqrt 3 \\c.Q = 3\\ \to \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} = 3\\ \to x + \sqrt {3x} + 2 = 3\left( {x + \sqrt x – 2} \right)\\ \to x + \sqrt {3x} + 2 = 3x + 3\sqrt x – 6\\ \to 2x + \left( {3 – \sqrt 3 } \right)\sqrt x – 8 = 0\\\Delta = 76 – 6\sqrt 3 > 0\\ \to \left[ \begin{array}{l}\sqrt x = \dfrac{{ – \left( {3 – \sqrt 3 } \right) + \sqrt {76 – 6\sqrt 3 } }}{4}\\\sqrt x = \dfrac{{ – \left( {3 – \sqrt 3 } \right) – \sqrt {76 – 6\sqrt 3 } }}{4}\left( l \right)\end{array} \right.\\ \to x = 2,917185887\\d.Q > \dfrac{1}{2}\\ \to \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > \dfrac{1}{2}\\ \to \dfrac{{2x + 2\sqrt {3x} + 4 – x – \sqrt x + 2}}{{2\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > 0\\ \to \dfrac{{x + \left( {2\sqrt 3 – 1} \right)\sqrt x + 6}}{{2\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > 0\\Do:\left\{ \begin{array}{l}x + \left( {2\sqrt 3 – 1} \right)\sqrt x + 6 > 0\forall x \ge 0;x \ne 1\\\sqrt x + 2 > 0\forall x \ge 0;x \ne 1\end{array} \right.\\ \to \sqrt x – 1 > 0\\ \to x > 1\end{array}\)0Reply Share ShareShare on FacebookLeave an answerLeave an answerHủy By answering, you agree to the Terms of Service and Privacy Policy .* Lưu tên của tôi, email, và trang web trong trình duyệt này cho lần bình luận kế tiếp của tôi.
Jezebel
Đáp án:
a. \(\dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\)
Giải thích các bước giải:
\(\begin{array}{l}
a.Q = \dfrac{{3x + \sqrt {3x} – 3 – \left( {\sqrt x + 1} \right)\left( {\sqrt x – 1} \right) – \left( {\sqrt x – 2} \right)\left( {\sqrt x + 2} \right)}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\
= \dfrac{{3x + \sqrt {3x} – 3 – x + 1 – x + 4}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\
= \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}}\\
b.Thay:x = 4 + 2\sqrt 3 \\
= 3 + 2\sqrt 3 .1 + 1 = {\left( {\sqrt 3 + 1} \right)^2}\\
\to Q = \dfrac{{4 + 2\sqrt 3 + \sqrt {3.{{\left( {\sqrt 3 + 1} \right)}^2}} + 2}}{{\left( {\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} + 2} \right)\left( {\sqrt {{{\left( {\sqrt 3 + 1} \right)}^2}} – 1} \right)}}\\
= \dfrac{{4 + 2\sqrt 3 + \left( {\sqrt 3 + 1} \right)\sqrt 3 + 2}}{{\left( {\sqrt 3 + 1 + 2} \right)\left( {\sqrt 3 + 1 – 1} \right)}}\\
= \dfrac{{6 + 2\sqrt 3 + 3 + \sqrt 3 }}{{\left( {\sqrt 3 + 3} \right)\sqrt 3 }}\\
= \dfrac{{9 + 3\sqrt 3 }}{{3 + 3\sqrt 3 }} = \dfrac{{3 + \sqrt 3 }}{{1 + \sqrt 3 }}\\
= \dfrac{{\sqrt 3 \left( {1 + \sqrt 3 } \right)}}{{1 + \sqrt 3 }} = \sqrt 3 \\
c.Q = 3\\
\to \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} = 3\\
\to x + \sqrt {3x} + 2 = 3\left( {x + \sqrt x – 2} \right)\\
\to x + \sqrt {3x} + 2 = 3x + 3\sqrt x – 6\\
\to 2x + \left( {3 – \sqrt 3 } \right)\sqrt x – 8 = 0\\
\Delta = 76 – 6\sqrt 3 > 0\\
\to \left[ \begin{array}{l}
\sqrt x = \dfrac{{ – \left( {3 – \sqrt 3 } \right) + \sqrt {76 – 6\sqrt 3 } }}{4}\\
\sqrt x = \dfrac{{ – \left( {3 – \sqrt 3 } \right) – \sqrt {76 – 6\sqrt 3 } }}{4}\left( l \right)
\end{array} \right.\\
\to x = 2,917185887\\
d.Q > \dfrac{1}{2}\\
\to \dfrac{{x + \sqrt {3x} + 2}}{{\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > \dfrac{1}{2}\\
\to \dfrac{{2x + 2\sqrt {3x} + 4 – x – \sqrt x + 2}}{{2\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > 0\\
\to \dfrac{{x + \left( {2\sqrt 3 – 1} \right)\sqrt x + 6}}{{2\left( {\sqrt x + 2} \right)\left( {\sqrt x – 1} \right)}} > 0\\
Do:\left\{ \begin{array}{l}
x + \left( {2\sqrt 3 – 1} \right)\sqrt x + 6 > 0\forall x \ge 0;x \ne 1\\
\sqrt x + 2 > 0\forall x \ge 0;x \ne 1
\end{array} \right.\\
\to \sqrt x – 1 > 0\\
\to x > 1
\end{array}\)