In ΔPQR, \text{m}\angle P = (4x+11)^{\circ}m∠P=(4x+11) ∘ , \text{m}\angle Q = (2x+1)^{\circ}m∠Q=(2x+1) ∘ , and \text{m}\angle R = (7x-14)^{\

Question

In ΔPQR, \text{m}\angle P = (4x+11)^{\circ}m∠P=(4x+11) ∘ , \text{m}\angle Q = (2x+1)^{\circ}m∠Q=(2x+1) ∘ , and \text{m}\angle R = (7x-14)^{\circ}m∠R=(7x−14) ∘ . Find \text{m}\angle P.m∠P.

in progress 0
Thạch Thảo 2 months 2021-08-19T05:33:47+00:00 1 Answers 4 views 0

Answers ( )

    0
    2021-08-19T05:34:48+00:00

    Answer:

    67°

    Step-by-step explanation:

    According to angle sum property of a triangle, sum of all the angles of a triangle is equal to 180°.

    In ΔPQR,

    ∠P + ∠Q + ∠R = 180°

    Put ∠P = (4x+11)°, ∠Q = (2x+1)° and ∠R = (7x-14)°

    4x+11+2x+1+7x-14=180\\13x-2=180\\13x=182\\x=14

    So,

    m∠P = [4(14)+11]° = 67°

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )