If P(A) = 2/3, P(B) = 4/5 and P(AnB) = 3/5, what is P(AuB)?

Question

If P(A) = 2/3, P(B) = 4/5 and P(AnB) = 3/5, what is P(AuB)?

in progress 0
Thành Đạt 5 months 2021-08-11T10:48:19+00:00 2 Answers 10 views 0

Answers ( )

    0
    2021-08-11T10:50:05+00:00

    Answer:

     \frac{13}{15}

    Step-by-step explanation:

    We know that,

    P(AUB) = P(A) + P(B) – P(A n B)

    So,

    P(AUB) = P(A) + P(B) - P(A n B) \\  =  \frac{2}{3}  +  \frac{4}{5}  -  \frac{3}{5}  \\  =  \frac{10 + 12 - 9}{15}  \\  =  \frac{22 - 9}{15}  \\  =  \frac{13}{15}

    hope this helps you.

    Have a nice day!

    0
    2021-08-11T10:50:10+00:00

    Answer:

    13/15

    Step-by-step explanation:

    P(A∪B) = P(A) + P(B) – P(A∩B)

                = 2/3 + 4/5 – 3/5

     Getting a common denominator

                2/3 *5/5 + 4/5*3/3  – 3/5 *3/3

                 10/15 + 12/15 – 9/15

                 13/15

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )