Identify the perimeter and area of a square with diagonal length 24in. Give your answer in simplest radical form!!! 242‾√

Question

Identify the perimeter and area of a square with diagonal length 24in. Give your answer in simplest radical form!!!

242‾√ in; 288 in2

482‾√ in; 288 in2

242‾√ in; 144 in2

482‾√ in; 144 in2

in progress 0
Sapo 4 months 2021-09-03T09:02:27+00:00 1 Answers 13 views 0

Answers ( )

    0
    2021-09-03T09:03:31+00:00

    Answer:

    Perimeter: 48\sqrt{2} \: \mathrm{inches}

    Area: 288\mathrm \: \mathrm{square \: inches}

    Step-by-step explanation:

    If the diagonal of the square is 24 inches, the side length of the square is 12\sqrt{2} inches (2x^2=24^2). The perimeter of this square is then 4 \cdot 12\sqrt{2}=\fbox{$48\sqrt{2}\: \mathrm{in}$} and the area (12\sqrt{2})^2=\fbox{$288\: \mathrm{in^2}$}.

Leave an answer

Browse

Giải phương trình 1 ẩn: x + 2 - 2(x + 1) = -x . Hỏi x = ? ( )